INPUT/OUTPUT

<streambuf> Defines class template basic_streambuf, which is essential to the operation of the iostream classes—stream
buffers.

<strstream> Defines several classes that support iostreams operations on sequences stored in an array of char objects.

ITERATOR

<iterator> Defines a number of classes, class templates, and function templates used for the declaration and
manipulation of iterators—iterators and iterator support.

LANGUAGE SUPPORT

<cfloat> Includes the Standard C header <float.h> within the std hamespace, providing C-style floating-point limit
macros.

<cis0646> Includes the Standard C header <iso646.h> within the std namespace.

<climits> Includes the Standard C header <1limits.h> within the std namespace, providing C-style numeric scalar-limit
macros.

<csetjmp> Includes the Standard C header <setjmp.h> within the std namespace, providing C-style stack unwinding.

<csignal> Includes the Standard C header <signal.h> within the std namespace, providing C-style signal handling.

<cstdarg> Includes the Standard C header <stdarg.h> within the std namespace, providing variable-length function
argument lists.

<cstddef> Includes the Standard C header <stddef.h> within the std namespace, providing C library language support.

<exception> Defines several types and functions related to exception handling.

<limits> Defines the class template numeric_limits, whose specializations describe arithmetic properties of scalar
data types.

LOCALIZATION

<clocale> Includes the Standard C header <locale.h> within the std namespace, representing cultural differences
C-style.

<locale> Defines many class templates and function templates that encapsulate and manipulate locales, which repre
sent cultural differences.

NUMERICS

<cmath> Includes the Standard C header <math.h> within the std namespace, providing standard math functions.

<complex> Provides a class template describing an object that stores both the real part and the imaginary part of a
complex number.

<cstdlib> Includes the Standard C header <stdlib.h> within the std namespace, providing pseudo-random numbers.

<numeric> Defines several function templates useful for computing numeric values—generalized numeric operations.

<valarray> Defines the class template valarray along with many supporting template classes and functions, providing
numeric vectors and operations.

STRINGS

<cctype> Includes the Standard C header <ctype.h> within the std namespace—character classsification.

<cstdlib> Includes the Standard C header <stdlib.h> within the std namespace, providing C-style string and character
functions.

<cstring> Includes the Standard C header <string.h> within the std namespace, providing C-style string and character
functions.

<cwchar> Includes the Standard C header <wchar.h> within the std namespace, providing C-style wide character
support.

<cwetype> Includes the Standard C header <wctype.h> within the std namespace, providing C-style wide character
string functions.

<string> Defines the container template class basic_string and various supporting templates—a string of T.

THE WAITE GROUP’S

L++

pw-lo

Jan Walter

Danny Kalev
Michael J. Tobler
Paul Snaith

Andrei Kossoroukov
Scott Roberts

SAMS

A Division of Macmillan Computer Publishing
201 West 103rd St., Indianapolis, Indiana, 46290 USA

The Waite Group’s C++ How-To

Copyright 0 1999 by Sams Publishing

All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability
is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the prepara-
tion of this book, the publisher and author assume no responsi-
bility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained
herein.

International Standard Book Number: 1-57169-159-6
Library of Congress Catalog Card Number: 98-86976
Printed in the United States of America

First Printing: January, 1999

02 01 00 99 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trade-
marks or service marks have been appropriately capitalized. Sams
Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The authors and the
publisher shall have neither liability or responsibility to any
person or entity with respect to any loss or damages arising from
the information contained in this book or from the use of the CD
or programs accompanying it.

EXecuTIVE EDITOR
Tracy Dunkelberger
ACQUISITIONS EDITOR
Michelle Newcomb
DEVELOPMENT EDITOR
Bryan Morgan
MANAGING EDITOR
Jodi Jensen
ProJECT EDITOR
Dana Rhodes Lesh
Copy EDITOR
Mike Henry
INDEXER
Johnna VanHoose
PROOFREADER
Eddie Lushbaugh
TECHNICAL EDITORS
Darralyn McCall
Jeramie Hicks
Vincent Mayfield
SOFTWARE DEVELOPMENT
SPECIALIST
Dan Scherf
TeAM COORDINATOR
Michelle Newcomb
INTERIOR DESIGNER
Gary Adair
CoVER DESIGNER
Karen Ruggles
LAYOUT TECHNICIANS
Brandon Allen
Timothy Osborn

Staci Somers
Mark Walchle

CONTENTS AT A GLANCE

INTRODUCTION

Part |

CHAPTER 1:
CHAPTER 2:

CHAPTER 3:

Part Il

CHAPTER 4:
CHAPTER 5:
CHAPTER 6:
CHAPTER 7:

Part Il
CHAPTER 8:

CHAPTER 9:

Part IV

CHAPTER 10:
CHAPTER 11:

Part V

CHAPTER 12:

CHAPTER 13:

Part VI

CHAPTER 14:

CHAPTER 15:

Part VII

APPENDIX A:

APPENDIX B:
INDEX

Language Topics
A QUICK INTRODUCTION TO THE LANGUAGE . .7

OBJECT ORIENTATION—THEORY AND
PRACTICE 51

OBJECT ORIENTATION—C++ SPECIFICS 69

Data Structures

STRUCTURES VERSUS CLASSES
COMMON MISTAKES MADE WITH CLASSES . .157

TEMPLATE CLASSES 217
THE STANDARD TEMPLATE LIBRARY’S
CONTAINERCLASSES 245
Algorithms

THE STANDARD C LIBRARY’S INCLUDED
ALGORITHMS 285
THE STANDARD TEMPLATE LIBRARY’S

INCLUDED ALGORITHMS 313

Error Handling

C-STYLE ERROR HANDLING 371
EXCEPTION HANDLING INC++ 407
Memory Management

NEW AND DELETE VERSUS MALLOC ()

AND FREE() « v ot oo e 441
MEMORY MANAGEMENT TECHNIQUES USING
CLASSES 471
1/0

UNDERSTANDING THE I/O STREAMS

LIBRARY 497
FILEI/O ... 523
Appendixes

NAMESPACES 549
RUNTIME TYPE INFORMATION 559

TABLE OF CONTENTS

INTRODUCTION 1

PART |
Language Topics

CHAPTER 1

A QUICK INTRODUCTION TO THE LANGUAGE 9
1.1 Write the simplest C++ program without knowing the language 12
1.2 Create a program to perform calculations 17
1.3 Use the various loop statements that are available in C++ 21
1.4 Create a program that uses one or more functions 25
1.5 Use the derived data types such as arrays and pointers 29
1.6 Create data when the programisrunning 37
1.7 Create a program to perform error handling, specifically

exception handling 41
CHAPTER 2
OBJECT ORIENTATION—THEORY AND PRACTICE 53
2.1 Understand the object-oriented paradigm 55
2.2 Learn the concept of inheritance so that | can apply it

programmatically 57
2.3 Learn the concept of encapsulation 62
2.4 Learn the concept of polymorphism L 64
CHAPTER 3
OBJECT ORIENTATION—C++ SPECIFICS 71
3.1 Createasimpleclass in C++ i 72
3.2 Implement the use of inheritance inC++ 80
3.3 Apply the use of encapsulation in a C++ program 87
3.4 Implement polymorphismin C++ 91
3.5 Implement static membersofaclass, 97
PART II

Data Structures

CHAPTER 4

STRUCTURES VERSUS CLASSES i 107
4.1 Createmyown datatypeot 110
4.2 Hide my data from external programs, 118
4.3 Use encapsulation? What steps are required to encapsulate data? 129

4.4 Create My OWN OPEratorSo v vttt et 134

4.5 Overload relational and equality operators 139
4.6 Provide access to encapsulated data to certainclasses 144
4.7 Maintain global data in my program 148
4.8 Know when | should use structures and when | should use classes 151
CHAPTER 5
COMMON MISTAKES MADE WITH CLASSES 159
5.1 Know when to take an object-oriented approach or a procedural approach . ..162
5.2 Useandaccessaclasssdatamembers 169
5.3 Use the scope resolution operatorciiiiiiiiunann... 175
5.4 Use dot notation to access the member functions of an object 181
5.5 Know which constructor to use when there are several to choose from 186
5.6 Implement function overloading 191
5.7 Correctly make use of inheritance, 194
5.8 Pass parameters back through the C++ inheritance mechanism

o parent Classesot 200
5.9 Distinguish between virtual classes and nonvirtual classes? How do | know

when to use virtual classes and what does the word virtual mean in C++?206
CHAPTER 6
TEMPLATE CLASSES . .o\ttt e e e, 219
6.1 Create a template class to represent any simple data type and understand

how to use the template in a working C++ program 221
6.2 Create a template class to represent any simple data type and extend it

to read in data to a variable of any datatype 225
6.3 Create a template class to represent a compound data type and understand

how to use the template in a working C++ program 228
6.4 Write a template class that has two undefined data types that can be resolved

atalater time 233
6.5 Use atemplate class to handle a structure 238
CHAPTER 7
THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES 247
7.1 Create a container object that automatically grows or shrinks as needed 250
7.2 Read asingle element of a container 254
7.3 Modify a single element of a container 257
7.4 Useageneric LIFOdatamodel 261
7.5 Prevent automatic reallocation of a container 268
7.6 Traverse through a containerselements 273

7.7 Implementaqueuedatamodel 278

THE WAITE GROUP’S C++ HOW-TO

viii

PART Il

Algorithms

CHAPTER 8

THE STANDARD C LIBRARY’S INCLUDED ALGORITHMS 287
8.1 SOMt AN AITaY . ..t vttt 289
8.2 Findanelementinanarrayuiiiiiiiiri., 298
8.3 Locate anelementinanonsortedarrayc. .. 302
8.4 Choose between 1findand 1searchc.cuuiiieninnnnnn.. 305
8.5 Generate a sequence of randomnumbers 309
CHAPTER 9

THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS .. .315

9.1 Create classes for sequential containers 320
9.2 Use predicates with sequence operationsc.ccviuvenn... 328
9.3 Repeat an action with all elements in a containerrange 333
9.4 Compare tWO SEQUENCES . . . v v vt ettt e et e e 337
9.5 Search for a sequence of values ina container 341
9.6 Accumulate all container elements and create a sequence

of accumulated SUMS 345
9.7 Sort elements in a container using different sorting indexes 351
9.8 Change the order of the containerelements 362
PART IV

Error Handling

CHAPTER 10

C-STYLE ERROR HANDLING e 373
10.1 Handle runtime errors in my programscouiiieieie.. 376
10.2 Use the standard C library functions perror and strerror and the

predefined C macros to report runtime errors in my programs 381
10.3 Use assert to catch errors in my code when running in debug mode 385
10.4 Use raise and signal to indicate errors in my programs 387
10.5 Use abort to terminate my application if a serious error occurs 391
10.6 Use exit and atexit together to perform some action when my program

terminates normally 393
10.7 Detect errors that occur when reading from or writing to a file using the

file functions provided with the Standard C Library 395
10.8 Use setjmp and longjmp to maintain state when handling errors 397
10.9 Use a C++ class to handle runtime errors in a more maintainable fashion400

CONTENTS

CHAPTER 11

EXCEPTION HANDLING IN C++ oo e 409
11.1 Utilize the exception handling mechanism to process potential

error conditions 411
11.2 Use the various catch constructs such as multiple catch clauses,

catch ordering, and the rethrowing of exceptions 419
11.3 Implement and use an exception class 425
11.4 Specify exceptions that a function will throw 430
11.5 Handle exceptions that are not caught or not expected 434
PART V

Memory Management

CHAPTER 12

NEW AND DELETE VERSUS MALLOC() AND FREE() 443
12.1 Use new and delete with the ¢ malloc() and free() routines 445
12.2 Use other C mem. .. routines on objects allocated with new 446
12.3 Find out how much memory my structures and classes really take 447
12.4 Prevent memory leaks caused by not using delete[] to delete arrays 450
12.5 Override the new or delete operators formyclasses 451
12.6 Overload the new and delete functions forarrays 455

CHAPTER 13

MEMORY MANAGEMENT TECHNIQUES USING CLASSES 473
13.1 Make a simple class to clean up dynamically allocated memory

automatically 475
13.2 Make a class that automatically cleans up objects allocated with new 479
13.3 Make an object that deallocates itself when there is no more

code referencing it 483
PART VI
1/0
CHAPTER 14
UNDERSTANDING THE I/0O STREAMS LIBRARY 499
14.1 Use the C Standard I/O Library with the C++ 1/O streams library 500
14.2 Make my own classes compatible with cinand cout 503
14.3 Perform complex formatting with cout or another ostream object 504
14.4 Make my own stream manipulators 515

THE WAITE GROUP’S C++ HOW-TO

CHAPTER 15

FILE 1/O . . o 525
15.1 Openafilestream 526
15.2 Continually read data until theend offile 529
15.3 Handle stream errorso 532
15.4 Read and write binary files 536
15.5 Read from or write to different positionsinafile 542
PART VII

Appendixes

APPENDIX A

NAMESPACES 549
The Rationale Behind Namespacest 550
A Brief Historical Background 550
Large-Scale Projects Are Susceptible to Name Clashes 550
Properties of Namespacesottt 551
A Fully Qualified Name 551
A using-Declaration and a using-Directive 551
Namespaces Are OPBNottt e 552
Namespace AlIASESot e 553
Koenig LooKUp e 554
Namespaces Do Not Incur Additional Overhead 554
The Interaction of Namespaces with Other Language Features 554
:: Operator Should Not Be Used to Designate a Global Function 555
Turning an External Function into a File-Local Function 555
Standard Headers Names i 556
Restrictions 0N NameSPaCES o oot e it e e e 557
Namespace std May Not Be Modified, 557
User-Defined new and delete Cannot Be Declared in a Namespace 557
COMMENES . . . 558

APPENDIX B

RUNTIME TYPE INFORMATION 559
Static Binding 559
Dynamic Binding 560
Historical Background 563
RTTI CONSLItUENESo e e 563
COMMENES . . e 568

ABOUT THE AUTHORS

Jan Walter is a freelance computer consultant living around Vancouver, B.C.,
Canada. He spends most of his time doing network design and implementation,
but “would rather be coding.” Jan has fulfilled programming contracts with
several large companies in the area, mostly using C++. Code optimization and
performance tuning are a distinct area of interest, as is compiler technology. The
latter came about after spending a lot of time hunting down bugs introduced by
parser problems in Borland C++ in one of his projects.

This is his second project with Macmillan Computer Publishing. The first was
as contributing author to Que's Using Linux, by Bill Ball, 1998.

Jan Walter can be reached at jwalter@rogers.wave.ca.

Danny Kalev is a certified system analyst and software engineer with 10 years
of experience, specializing in C++ and object-oriented analysis and design. He
is now finishing his M.A. degree in applied linguistics at the University of Tel
Aviy, Israel. His research focuses on speech recognition algorithms. He is a hi-fi
enthusiast and likes all kinds of music. He is also interested in natural
languages and philology.

His technical interests involve generic programming, networking, compiler
technology, artificial intelligence, and embedded systems. He has contributed
several articles to C++ magazines and Web publishers. He is also a member of
the ANSI C++ standardization committee. He can be reached at
dannykk@inter.net.il

Michael J. Tobler is a senior technical specialist with BSI Consulting in
Houston, Texas. He has more than 16 years experience working on software
development projects, specializing in architecting, designing, and developing
multitier systems using C++ and Java. He is currently the president of the
Houston Java Users Group. Michael is an advocate and practitioner of the
Unified Modeling process from Rational and a proponent of patterns and
pattern languages. He is a contributing author for C++ Unleashed. He has
discovered that skydiving is a very addicting sport. Michael can be reached at
mtobler@ibm.net.

Paul Snaith works in the I.T. industry in the UK. He is currently a project

leader in software development for a well-known British airline dealing mainly

with Web development and electronic commerce. Previously, he spent several

years lecturing in modern computer languages such as C++, Java, VB, and

Delphi. In the far distant past (only a few years ago but it seems much longer),

Paul was involved in the rock music industry as a musician and played with the

wonders of electronic computer generation of his work. Paul has just finished

another book called The Complete Idiot’s Guide to C++ and is planning other such

works in the near future. Xi

Xii

Andrei Kossoroukov is a professional developer and a software consultant with
15+ years of business experience. He graduated with a Master of Science in
mathematics in 1982 and finished postgraduate studies in relational databases
in 1985. Working with computers for the last 25 years, he has developed artifi-
cial intelligence systems, financial software, and distributed messaging systems.
He is an author of more than 30 scientific and technical articles, papers, and
books. Currently he works for I.T. Systems, Inc.(Vancouver, B.C., Canada) as a
senior software consultant and specializes in the development of Internet-based
systems with distributed data.

Scott Roberts works as a developer support engineer on the Internet Client
Development team at Microsoft. He assists developers who are using Visual C++
and COM to create Internet applications. Scott has been a developer for 9 years
and has worked at a number of companies on a wide range of products, from
back-end communications systems to end-user software applications. Scott has
been a frequent contributor to many technical publications, including Microsoft
Interactive Developer and Microsoft Systems Journal. In addition, he has
spoken at many technical conferences in the United States and Europe. Scott
can be reached at scottrobe@hotmail.com.

DEDICATION

| dedicate this book to my grandparents. In their time, people went through so much, and many gave their
lives to let us have what we have now. It is easy for us today to look back 60 years and say, “Times were tough
then,” but we have little comprehension of what actually went on.
“Lest we forget” is an apt phrase to take to heart.

—Jan Walter

ACKNOWILEDGMENTS

| do also need to thank the staff at Macmillan Computer Publishing for their
seemingly infinite patience. Many thanks for encouragement go to Michelle
Newcomb, and thanks, Bryan, for your insightful feedback.

—Jan Walter

xiii

Xiv

TELL US WHAT YOU THINK!

As the reader of this book, you are our most important critic and commentator.
We value your opinion and want to know what we're doing right, what we
could do better, what areas you'd like to see us publish in, and any other words
of wisdom you're willing to pass our way.

As the executive editor for the Advanced Programming and Distributed
Architectures team at Macmillan Computer Publishing, | welcome your
comments. You can fax, email, or write me directly to let me know what you
did or didn't like about this book—as well as what we can do to make our
books stronger.

Please note that | cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, | might not be able to reply to
every message.

When you write, please be sure to include this books title and author as well as
your name and phone or fax number. | will carefully review your comments
and share them with the author and editors who worked on the book.

Fax: 317-817-7070
Email: programming@mcp.com

Mail: Tracy Dunkelberger
Executive Editor
Advanced Programming and Distributed Architectures Team
Macmillan Computer Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Despite the development of several new languages over the past five years, C++
has held its own in the development world. Originally developed at AT&T Bell
Laboratories by Bjarne Stoustrup, the language has evolved to encompass ever

more object-oriented concepts.

With the latest ANSI revision of C++, version 3, the language gets some fine-
tuning in memory management, solid exception support, and new typecasting
operators. The biggest improvement, however, was the introduction of the
Standard Template Library (STL), which provides a standard set of container
classes and the means to work with them. Before this, most compiler vendors
included their own container classes and other objects in their libraries, posing
an impediment to porting code from one platform to another where the same
vendor’s compiler was not supported.

What makes C++ so useful? Some people say that its C language underpin-
nings are great for getting as close to the hardware as possible without using
assembler code. Developers find that the strong typing by the C++ language
helps reduce the number of bugs in programs. Some people use C++ as “just a
better C,” but the point is missed then: The object-oriented programming
(OOP) style makes it easier to translate from the problem language and problem
world to the solution language.

The great misconception of many people is that object-oriented program-
ming produces slower code. This is not necessarily so. If a problem can be put
so that a human mind can understand it better, it is likely that this mind can
produce a better solution. Algorithms, and their efficiency, have a much greater
impact on program performance than the language does. C++ is only marginally
slower than C code overall, and this makes it one of the fastest executing
languages for object-oriented programming.

This book is intended to be an eye-opener for C++ programmers. | admit
freely that | learn the most from reading other peoples’ code, as | learn their
approaches to problems. Its easy to get stuck in one way of doing things, and
this is dangerous with any creative exercise. Computer programming is no
exception. What'’s written in this book is not gospel, but yet another approach
that can be added to your arsenal.

THE WAITE GROUP’S C++ HOW-TO

The Waite Group’s C++ How-To is divided into 15 chapters, each of which
covers a specific feature of the C++ programming language:

Chapter 1, “A Quick Introduction to the Language”—Before diving into the
“deep end” of C++ programming, this chapter provides a gentle introduction
into the basic concepts of the language. Loops, calculations, and error handling
are all covered here for the beginning C++ programmer.

Chapter 2, “Object Orientation—Theory and Practice”—To fully make use of
the C++ language, object-oriented programming must be understood. Many C,
Pascal, and COBOL programmers are assigned to C++ projects and never take
the time—or get the opportunity—to fully learn the benefits of OOP. Without
focusing on the specific syntax used in C++, this chapter covers the basic
object-oriented concepts required to become a great C++ programmer.

Chapter 3, “Object Orientation—C++ Specifics"—After learning or reviewing
the basic concepts of object-oriented programming in Chapter 2, you will learn
how these concepts are specifically applied to C++ in this chapter. The basic
tenets of OOP—inheritance, polymorphism, and encapsulation—are all covered
here as well as the fundamental C++ unit: the class.

Chapter 4, “Structures Versus Classes”—C++ provides two primary devices that
can be used to contain data: structures and classes. Although the two data
structures can be identical, classes are much more powerful because they fully
support the primary OOP constructs. This chapter compares and contrasts
these two data types and provide numerous examples of their use.

Chapter 5, “Common Mistakes Made with Classes”—Because of the tremendous
difference between traditional structured programming and object-oriented
programming, many beginning-to-intermediate—level programmers make
several common mistakes. This chapter introduces these mistakes, explains why
they are mistakes, and offers solutions to them.

Chapter 6, “Template Classes”—The template class is a mechanism that enables
you to write a single solution to a problem that can satisfy all data types. The
actual data type required can be specified later, and the template class can then
be used for a wide range of data types, all using the same C++ template. This
chapter introduces the template class, or templates as they are commonly
known.

Chapter 7, “The Standard Template Library’s Container Classes"—In this
chapter, you will explore the following containers of the Standard Template
Library: vector, string, stack, list, and queue. | also discuss iterators and their
role in the STL framework. Finally, you will survey some other containers as
well as “almost container” classes of the Standard Library.

INTRODUCTION

Chapter 8, “The Standard C Library’s Included Algorithms”—In this chapter, |
survey the algorithms of the Standard C Library. These algorithms enable you to
sort an array and find an element in it. In addition, | discuss the random
number generation functions of the Standard C Library.

Chapter 9, “The Standard Template Library’s Included Algorithms"—STL algo-
rithms are represented by template functions and provide copying, searching,
sorting, and merging functions, as well as other operations on data. Algorithms
are not member functions; they are separate from the container classes. You will
examine a number of these algorithms in this chapter. | give examples, where
possible, showing their use in typical situations.

Chapter 10, “C-Style Error Handling”—This chapter covers different error-
handling methods that work in C and C++ programs and some methods that
don't work well in C++ programs. Although this is a C++ book, I discuss C-type
error-handling techniques so that you will know what you are dealing with if
you run into them in older C and C++ programs.

Chapter 11, “Exception Handling in C++"—The exception-handling mechanism
furnished by the standard provides a common and standard interface for
handling program anomalies. Without exception handling, error handling is
performed using return values from functions and global status variables. Each
developer has his or her own style of handling errors, leading to inconsistency
among applications and library packages. In this chapter, you will see various
ways to apply the exception-handling mechanisms.

Chapter 12, “new and delete Versus malloc() and free()"—This chapter
compares and contrasts the C++ new and delete operators and the C functions
malloc() and free(), and it covers their place in C++ memory management.
You must understand memory management using C and C++ techniques
because of the existence of legacy code and because many existing libraries use
the older C language techniques.

Chapter 13, “Memory Management Techniques Using Classes"—Whereas
C-style memory management basically requires the programmer to free
variables that have been created, C++-style memory management is much more
powerful, although a bit more challenging. This chapter focuses on many
advanced memory management techniques that you can use to improve the
reliability and performance of your applications.

THE WAITE GROUP’S C++ HOW-TO

e Chapter 14, “Understanding the I/O Streams Library"—So many programmers
seem to have difficulty with the C++ 1/O Streams library that it is quite common
to see C++ code still using the old C stdio functions to handle program 1/O.
Although some programmers might consider this approach practical, or even
superior, the C stdio library does not do much to help good programming
practice or catch oversights made by the programmer. This chapter introduces
the basic concepts required to use the Streams library and shows why it is a
preferred solution to the standard C method.

e Chapter 15, “File I/O"—This chapter covers 10Streams with a focus on file
streams. Examples are provided that demonstrate how to seek through files,
read/write binary files, and manage file I/O errors.

This book also includes two appendixes, one on namespaces and another on
runtime type information (RTTI).

WHO IS THIS BOOK INTENDED FOR?

The Waite Group’s C++ How-To is designed for C++ programmers of all skill
levels, from beginning to advanced. However, | anticipate that readers who pick
up this book already have a solid understanding of C++ programming and are
looking for “just the answers” to specific programming questions. This is also a
great supplemental resource for new C++ programmers searching for informa-
tion and instruction that goes beyond a typical tutorial.

PART |

LANGUAGE TOPICS

A QUICK
INTRODUCTION TO
THE LANGUAGE

How do I...

1.1

1.2
1.3

1.4
1.5

1.6
1.7

Write the simplest C++ program without knowing
the language?

Create a program to perform calculations?

Use the various loop statements that are available
in C++?

Create a program that uses one or more functions?

Use the derived data types such as arrays and
pointers?

Create data when the program is running?

Create a program to perform error handling,
specifically exception handling?

CHAPTER 1

11

1.2

A QUICK INTRODUCTION TO THE LANGUAGE

The C++ programming language is one of the most significant languages to
emerge in the past twenty years. The C++ language is also the most popular
object-oriented language in use today. | will examine the object-oriented
features of C++ beginning with Chapter 3, “Object-Orientation—C++ Specifics.”
Everything from word processors to spreadsheets, graphics applications, and
operating systems is written in the C++ language, and a majority of all
custom-written solutions are implemented in C++ as well. Despite this, many
programmers have yet to make the switch to C++.

This chapter introduces you to the C++ programming language. The
intended audience for this chapter is programmers currently using other
languages, such as C and Pascal, among others. If you have experience in the C
programming language, much of what you see in the chapter will be familiar,
with a few exceptions, of course. This chapter will introduce the basics of the
C++ programming language. It is not designed to be an exhaustive tutorial or
reference.

Chapter 2, “Object Orientation—Theory and Practice,” introduces the three
major concepts of object-oriented programming. It also introduces some of the
common terms used. Chapter 3 addresses object-oriented programming using
C++. You will not find any How-Tos in this chapter addressing object-oriented
programming.

Write the Simplest C++ Program Without Knowing
the Language

The quickest way to learn to program in an unfamiliar language is to write a
simple program and then analyze it. In this How-To, you will write a very
simple program. This program is really a template for a C++ program. The
program in this How-To demonstrates the minimum a C++ program must
consist of. You are not required to know C or C++ to create this program. You
will, although, need a C++ compiler and linker and a text editor.

Create a Program to Perform Calculations

Most useful programs perform a repetitive task. And almost every program
performs calculations of one type or another. In this How-To, a program is
presented that will perform some simple calculations. The program will
introduce the use of program variables to hold data. It also demonstrates some
of the popular mathematical operators. Output operations (displaying text) is
presented, as well as acquiring input from the user.

CHAPTER 1

1.3

1.4

1.5

1.6

1.7

A QUICK INTRODUCTION TO THE LANGUAGE

Use the Various Loop Statements That Are
Available in C++

In this How-To, you will write a program that uses the three C++ looping
constructs. The three loops discussed are for, do-while, and while. Input and
output functionality is also demonstrated. Looping statements are very
important for repetitive operations, such as accessing elements of an array, or
for visiting some finite or unknown number of objects, or for obtaining
continual input from a user.

Create a Program That Uses One or More Functions

Most programming languages support the use of functions and/or procedures.
In this How-To, you will be introduced to functions, including the declaration
and definition of functions. Argument passing is also shown; additionally,
returning values from functions is presented. You will create a program that
uses the facilities of a function to perform a calculation.

Use the Derived Data Types Such As Arrays and
Pointers

Arrays and pointers are considered by many developers as difficult types to
work with. This How-To should dispel that myth. A program is presented in
this How-To to demonstrate the more common uses of these derived types. You
will create a function to perform a calculation and one to display a message and
gather input from the user. The C++ struct is also introduced.

Create Data When the Program Is Running

The creation of data at runtime is introduced in this How-To. You will learn
how to dynamically allocate memory for various data types. Dynamically
creating memory at runtime is an important feature of C++; it allows you to
create only the objects that are required by your application. The C++ operators
new and delete are introduced.

Create a Program to Perform Error Handling,
Specifically Exception Handling

Error handling is important to the success of a program. Invalid input, accesses
to hardware that is not available, and other program anomalies must be tested
for and handled gracefully. This How-To presents the C++ exception handling
mechanism. The C++ Standard defines a standardized method for handling
exceptions at runtime.

CHAPTER 1

A QUICK INTRODUCTION TO THE LANGUAGE

COMPLEXITY

BEGINNING

1.1 Howdol...
Write the simplest C++ program
without knowing the language?

Problem

I would like to be able to write a C++ program without initially knowing
anything about the language. Is there a program | can write without having to
know what is required?

Technique

Most programmers investigate a new language by writing a simple program and
then go back to understand how it all works. You can do this in C++, too. At a
minimum, you will need

e A C++ compiler and linker

* A text editor

You will use the editor to write the source text, referred to as source code.
Then you will use the compiler and linker to produce the program.

Steps

You should create a base source code directory named SoURCE and then
change to this directory. Next, create a work directory named FIRST and
change to it.

Start your text editor. In a pinch, you could use Notepad if you are
running under Windows 95/NT. If you are using UNIX, you could use ed
or vi. Refer to your system documentation for details.

Type in the following source code, exactly as shown. Pay special attention
to symbols, such as brackets and semicolons.

// filename: first.cpp - my first C++ program
#include <iostream>
using namespace std ;
int main() /* main function */
{
cout << "My first C++ program!" << endl ;
return(0) ;

i EEl
WRITE A SIMPLE C++ PROGRAM WITHOUT KNOWING THE LANGUAGE

Save the file, naming it FIRST.cPP. Then exit the editor and return to the
command line.

At the command line, type the command required to run the compiler
and linker. For example, if you are using Microsoft Visual C++, you
would type c1 first.cpp. The compiler will run and (if you typed all
text correctly) return to the command line without any error messages. If
the compiler does report an error, refer to the following “Comments”
section.

A At the command prompt, type the name of the executable (called first).
If you are on a UNIX system and you do not see a file named first, look
for a file named a.out; if you find this filename, execute it. You should
see the following message on your screen:

My first C++ program!

In the next section, “How It Works,” | will discuss how this program
operates.

How It Works

Now it is time to examine the process in more detail. First, | will review the
processes that are required to create a program. Then I will examine the source
file itself, line by line.

The procedure to create a program is always the same. First, you create
source code and save it in a file so that the compiler can parse it. You can use
any text editor to type your source code. If you are using Windows, you can
use Notepad or WordPad. If you must use a word processor, be sure to save the
file as a pure ASCII text file. If you are using UNIX, you can use vi, emacs, or
ed. | recommend that you use a dedicated programmer’s editor for serious
source editing.

The next step is to type the source code to satisfy the functionality for the
program. Visual style for the source layout is important for both you and others
who will be maintaining your source code. A number of styles are accepted. See
the following “Comments” section for examples.

After you have typed the source code and have saved the file, the compiler
must be run against the source file. The compiler reads the source file, performs
interpretation, and produces an object file. The object file, in its current form,
cannot be executed directly.

Next, the linker must be run to produce the executable. The linker combines
the object file(s), plus any required library functions and classes to produce the
program. The output of the linker, if everything is successful, is an executable
program. This program is now ready to run.

CHAPTER 1

A QUICK INTRODUCTION TO THE LANGUAGE

Now shift your attention to the source code itself and discover what each
line does.

The first line in the file is identified as a comment. A comment in C++ can
be denoted in one of two ways. One way, as is demonstrated in the example,
consists of the two-character sequence // (two forward slashes). This style is
referred to as the line comment. The compiler disregards any text beyond this
sequence. The comment in this source text

// filename: first.cpp - my first C++ program

simply tells any readers that the name of this file is first.cpp and that this is
your first C++ program. The second form of comment in C++ consists of two
individual character sequences /*(slash-star) and */(star-slash) and is
commonly referred to as a block comment. The sequence /* begins the comment
and the sequence */ ends the comment. The difference between the two styles
is that block comments can span many lines, whereas the line comment cannot.
In addition, program statements can exist after the block comment’s end
sequence. A block comment is shown in the following example:

int main() /* main function */

The second line of code in the file

#include <iostream>

is a preprocessor directive. The preprocessor directive is executed before the
compiler and is used to perform initial processing of a source file. The
#include directive instructs the preprocessor to read in the file identified
within the brackets (or double quotes, if used). The file is literally inserted into
the source file at the point of the directive. After all preprocessing is complete,
the compiler is invoked on the resultant file. If your compiler complained about
this line of code, please review the following “Comments” section for more
information.

The third line in the source file
using namespace std ;
is a using directive and is used in conjunction with the namespace feature.
Namespaces are used to partition the global namespace. This eliminates, or at

least reduces, name conflicts. Refer to the following “Comments” section for a
discussion of the using directive if your compiler complains.

The function found on the fourth line of code
int main() /* main function */
is the starting point for a C++ program; the main function is a requirement of

every C++ program. The int is a C++ data type and designates that the return
value from main is an integer value. In short, the operating system loads a

i 15
WRITE A SIMPLE C++ PROGRAM WITHOUT KNOWING THE LANGUAGE

program into memory and then calls the main function to start the ball rolling.
The body of the main function is delineated by the opening and closing braces
{}. The “Comments” section that follows discusses an optional declaration of
main. Functions will be discussed in How-To 1.4.

The statement on the fifth line

cout << "My first C++ program!" << endl ;

displays a message to standard output (the screen). The insertion operator << is
used to put data to the cout object. Notice that the insertion operator can be
chained. In the example, the first data item sent to the cout object is a string of
text, followed by the end1 manipulator. (Note that the last character in end1 is
L, not the numeric value 1.) Finally, a semicolon is used to end the statement.

The last line of code

return(0) ;

if(

if(

if(

is the return statement. The return statement directs a function to return to its
caller; in this context, main returns to the operating system. A return
expression can optionally return a value to its caller. In this instance, the
return statement returns a zero to the operating system.

That's all that is required for a C++ program. In this exercise, you have built
a very simple, yet straightforward C++ program. All C++ programs must follow
this “template.” The remainder of a program’s functionality is up to you to
develop. This book consists of many examples you need to expand on this basic
example.

Comments

Source code style is a hotly debated topic. Every programmer develops his or
her own style of source code formatting. The sample that follows is the
traditional K&R style:

number < 100) {
// perform some functionality

The following demonstrates block style:
number < 100)

/1 perform some functionality

The following sample is a variation of the block style and is known as
indented block style:

number < 100)

{

/1 perform some functionality

}

CHAPTER 1

A QUICK INTRODUCTION TO THE LANGUAGE

The most widely accepted style is the second form, block style. Block style is
more visually pleasing and the braces are easier to visually align.

The convention used for the filename identified in the #include complies
with the Standard C++ convention. No extension is specifically identified for
the filename. If your compiler complained that it could not open iostream, try
replacing the statement:

#include <iostream>

with the following:

#include <iostream.h>

If your compiler does not conform to the new convention, it will try to find
a file named iostream. Changing the name to iostream.h should help. If your
compiler still complains with No such file or directory, you have one of
two problems. Either you have a very old compiler or your compiler’s settings
are incorrect. If you are using a very old compiler, | strongly suggest that you
upgrade to one of the newer packages. Why? The examples throughout this
book assume you are using a current compiler package—older compilers might
not understand some of the constructs used. | also mentioned that the
compiler’s settings might be incorrect. Specifically, check the settings that the
compiler uses for file locations, such as path settings or environment variables.

If your compiler complains about the following source code line:

using namespace std ;

simply remove that line from the source file and recompile. If the compiler no
longer complains, it does not support the namespace keyword. Alternatively,
you can precede the text with the line comment // characters, as in the
following example:

//using namespace std ;

Remember that the compiler will ignore any source code beyond the line
comment sequence. It is the decision of the compiler vendor whether to imple-
ment a language feature or not; the only way to know is to try the feature or
check the vendor’s documentation.

The optional declaration for main is the following:
int main(int argc, char *argv[]) ;

The first argument, int argc, represents the number of command-line argu-
ments provided to the program. The second argument, char *argv[], is an
array of pointers to char (specifically, to each of the arguments). Each argument
to a C++ program is treated as a string of text. You can pass information to a
program using arguments on the command line. For example, the following
shows a program that accepts input to multiply two numbers:

Prompt> mult 114 23

1.2

CREATE A PROGRAM TO iDERFORM CALCULATIONS

This example will read the two arguments, multiply the two values, and
display the result to the standard output.

COMPLEXITY

1.2

BEGINNING
How do I...

Create a program to perform
calculations?

Problem

| would like to write a program that can perform some calculations. | know that
I will have to use data variables, but | am unfamiliar with the various data types
and operators in C++,

Technique

Programming languages provide data type variables that can be used to hold
values. A value can be stored, accessed, and replaced in a variable. In order to
use a variable, you must decide the data type(s) that you need. The C++
language defines a number of variable data types to choose from. The program
presented in this How-To will calculate the number of inches for a specified
number of feet.

Steps

Change to your base source directory and create a new directory named
TOINCH. Then, start up your text editor.

Type in the following source code, exactly as shown:

// toinch.cpp - converts feet to inches.
#include <iostream>

using namespace std ;

const int inchesInFoot = 12 ;

int main()

{

int numberOfFeet = 0 ;

cout << "Please enter the number of feet, " ;
cout << "I will tell you the number of inches" << endl ;
cin >> numberOfFeet ;

int numberOfInches = numberOfFeet * inchesInFoot ;
cout << numberOfInches << " inches are in " ;
cout << numberOfFeet << " feet" << endl ;

CHAPTER 1

3

-

A QUICK INTRODUCTION TO THE LANGUAGE

return(0) ;

}

Save the file, naming it TOINCH.cPP. Then, exit out of the editor and
return to the command line.

Run the compiler and linker, naming TOINCH.CPP as the input file.

Run the TOINCH program. The following message will be displayed:

Please enter the number of feet, I will tell you the number of
inches

The cursor will be on the next line, awaiting input. Enter the value 2. The
program will perform the calculation and display the following message:

24 inches are in 2 feet

To perform another calculation, simply rerun the program.

How It Works

Let’s review the source code and see what is happening. As in How-To 1.1, if
your compiler complains about the following two lines of code:

include <iostream>
using namespace std ;

change them to this one line of code:

#include <iostream.h>

The third line of code

const int inchesInFoot = 12 ;

declares a variable of type int and is given the name inchesInFoot. You must
supply a name for every variable in C++. Notice that the modifier const is
applied to the type name. This modifier says that this variable is a constant; the
variable’s value cannot be changed.

This source line also introduces the assignment operator =. The assignment
operator is used to place the value on the right-hand side of the operator to the
variable on the left-hand side. In this example, the value 12 is placed in the
variable named inchesInFoot. The constant (variable) inchesInFoot will hold
this value throughout the life of the program (its value cannot be changed). The
next line of code is the following:

int numberOfFeet = 0 ;

1.2

CREATE A PROGRAM TO iDERFORM CALCULATIONS

This int, named numberofFeet is declared and initialized to a value of o.
The purpose of this variable is to hold the number of feet that the user specifies
at runtime. Note that the const modifier is not applied to this variable
definition because numberofFeet’s contents will need to be changed. The next
two lines

cout << "Please enter the number of feet, " ;
cout << "I will tell you the number of inches" << endl ;

are used to output a message (an instruction) to the user. Notice that although
the two statements are independent and exist on two separate lines, the
message is actually displayed to the user as a single line. The end1 manipulator
performs two operations. First, it flushes the output buffer and outputs a
newline character. Because output is to the screen, the cursor will be placed on
the next line, flush with the left margin. Because the first cout statement does
not end with an end1, the second message is appended to the first. The next
line of code

cin >> numberOfFeet ;

awaits input from the user. After the user enters a value and presses the Enter
key, the cin object will take the value and place it in the variable named
numberOfFeet. The cin statement actually performs a conversion behind the
scenes. You press the keyboard character 2; cin takes this character and
converts it to a C++ integer type and places the value in the variable. This
brings you to the next line of code:

int numberOfInches = numberOfFeet * inchesInFoot ;

il

This statement introduces the multiplication operator *. This operator is one
of many defined by the C++ language. This source line is referred to as a
compound statement. First, the int variable number0ofInches is declared for use.
Next, the value stored in numberofFeet is multiplied by the value stored in
inchesInFoot. The result of this expression is then assigned to the variable
numberOfInches. The next two source lines

cout << numberOfInches << " inches are in " ;
cout << numberOfFeet << " feet" << endl ;

display the result of the conversion to the standard output. Notice that you can
stream different data types to the cout object. First, the value stored in
numberOfInches is sent to cout, followed by a string. In the next statement,
numberOfFeet iS sent to cout, followed by another string, and finally the end1
manipulator.

The last program statement, the return statement, returns the value o
returns to the operating system.

m CHAPTER 1
A QUICK INTRODUCTION TO THE LANGUAGE

Comments

The C++ language defines a number of data types: bool, char, int, long,
float, and double. A bool is used to represent a Boolean value, either true or
false. The char type is used to contain characters, such as 3, #, or m. The types
int and long are integral types and can hold whole numbers only. The types
float and double are used for storing floating-point numbers.

In C++, strings are implemented as an array of char. In fact, any data type
can be declared as an array. You will look at arrays in a How-To later in this
chapter.

The const keyword is used to qualify a declaration. You must remember to
initialize the const variable at the point of declaration; if you don't, you will not
be able to assign to it. For example, the compiler will not allow the following:

const int inchesInFoot ;
inchesInFoot = 12 ; // error right here!

The const variable is used as a symbolic constant (or alias) for a value.
Using a symbolic name provides a descriptive name for some value. An
additional benefit of using const is that the value stored in the variable is
protected from modification. It also helps with code maintenance. Why? Let's
look at a brief example. The following example defines a char that is constant.
Assume that the char is used as a choice within a menu system.

const char REPLACE_OPTION = 'S' ; // replace
/...

if(option == REPLACE_OPTION)

/...

Using a constant allows you to change the value that the name symbolizes in
just one place without having to change all occurrences of that value. In other
words, you would have to search for all occurrences of the letter S and change
them to the new value. Instead, by using a constant, you only have to change
the initialization value of the constant declaration. The following line of code
shows a decision to change the value of REPLACE_OPTION tO R:

const char REPLACE_OPTION = 'R' ;

The change is only required at the declaration. The next step would be to
recompile all the code associated with this change. You do not have to worry
about searching for every occurrence of R because the compiler will do all the
work required.

The cin object is used to accept data from the standard input; the default is
the keyboard. The extraction operator >> directs the input from the cin object
to the named variable(s). In the previous example, numberofFeet is the recip-
ient of data from cin.

e~ 21

USE THE VARIOUS LOOP STATEMENTS THAT ARE AVAILABLE IN C++

COMPLEXITY
BEGINNING

1.3 Howdoll...
Use the various loop statements
that are available in C++?

Problem

I have started to sink my teeth into C++ now by writing very simple programs.

I need to extend my knowledge of the language and have considered using a
loop statement as I've seen in other languages. | need to know the various loops
available in C++ and how to use them.

Technique

Looping techniques in C++ are essentially the same as they are in other
languages. The loop names might be different, but for the most part, they serve
the same purposes. The C++ language serves up three different types of looping
statements: for, do-while, and while. The following example will show all
three in action.

Steps

Change to your base source directory and create a new directory named
LooP. Next, fire up your text editor.

Type in the following source code, exactly as shown:

// loop.cpp - program to demonstrate C++ loops
#include <iostream>

using namespace std ;

int main()

{

int value = 0 ;

cout << "Beginning of while loop" << endl ;

while(value < 5)

{
cout << "The value of value is: " << value << endl ;
++value ;

}

cout << "End of while loop" << endl ;

cout << "\nBeginning of do-while loop" << endl ;
do {
cout << "The value of value is: " << value << endl ;
}while(value < 5) ;
cout << "End of do-while loop" << endl ;

m CHAPTER 1
A QUICK INTRODUCTION TO THE LANGUAGE

cout << "\nBeginning of for loop" << endl ;
for(value = 0; value < 5; valuet++)
{
cout << "The value of value is: " << value << endl ;

}

cout << "End of for loop" << endl ;

return 0 ;

}
Save the file as LooP.cPp and exit the editor to the command line.
Compile and link the Loop.cPp source file.

Run the program; the output should be as follows:

Beginning of while loop
The value of value is:
The value of value is:
The value of value is:
The value of value is:
The value of value is:
End of while loop

P ON=OS

Beginning of do-while loop
The value of value is: 5
End of do-while loop

Beginning of for loop
The value of value is:
The value of value is:
The value of value is:
The value of value is:
The value of value is:
End of for loop

A ON=OS

How It Works

Starting with the sixth line of code, an int has been declared and initialized
with a value of @. This integer variable will be used by all three loops. In
addition to demonstrating loops, this How-To introduces you to the C++
increment (++) and less-than (<) operators.

The next statement sends a message to the screen:
cout << "Beginning of while loop" << endl ;
It is always a good idea to let the user know what is going on within a
program. You can consider these messages as “progress reports.”
You begin your investigation of C++ loops with the next line of code:

while(value < 5)

e~ 23 pa

USE THE VARIOUS LOOP STATEMENTS THAT ARE AVAILABLE IN C++

The while loop is a precondition (entry condition) loop. First, the test
expression within the parentheses is evaluated. If the result of the expression is
non-zero (true), the statement(s) within the while loop’s body are executed. If
the result of the expression is @ (false), then the loop exits and control returns
to the first statement after the while loop’s body. This loop can be verbally
expressed as follows: “While the value stored in value is less than 5, execute
the statements within the loop’s body.” It is possible for a loop to never execute
if the expression is initially false. For example, if the variable value is initially
set to 20, the while loop will never execute.

An opening brace begins the body of a while loop and a closing brace ends
the body. All statements within the body are executed as long as the loop’s
expression is true. The while loop contains two statements, a message that
displays the contents of the variable value and an increment (++) expression.
You have seen the cout statement before; its job is to display data to the
standard output. The next statement uses the increment operator ++. This
operator simply increments the value of the operand by one. It is shorthand for
the following statement:

value = value + 1 ;

Two versions of the increment operator exist: prefix increment and postfix
increment. The version used in the while loop is the prefix increment operator.
The prefix increment version increments a variable first and then evaluates the
balance of the expression. The postfix increment version does the opposite: The
expression is evaluated first, and then the variable is incremented. The
following example shows the difference;

Line 1: if(++check < 6)
Line 2: if(check++ < 6)

Assume the value of check is 5 before the if statement. In line 1, the value
of check is incremented first, and then the expression is evaluated. Because
check is now 6, the expression evaluates to false (check < 6) and the
statements within if’s body are not executed. In line 2, the expression within
the if statement (check < 6) evaluates to true, check is incremented by 1.
Because the expression evaluates to true, the statements within the if's body
are executed.

After value is incremented, program control is returned to the top of the
while loop. The while loop’s expression is again evaluated and if it is non-zero,
the body is again executed; otherwise, the program exits the loop and control
jumps to the first statement after the while loop’s body. In this example, it is a
message to the user that the while loop has ended.

The next statement displays a message announcing the beginning of the
do-while loop. A do-while loop is a postcondition (exit condition) loop. A
do-while loop is always executed once, even if the test expression evaluates to

CHAPTER 1

A QUICK INTRODUCTION TO THE LANGUAGE

false. This behavior is in contrast to the while loop. Note that the value
contained in value is still 5, yet the cout statement is still executed. The test
expression within the while portion is evaluated as false and the loop is
terminated. Control resumes at the cout statement announcing the end of the
do-while loop.

Next, you come to the for loop. The for loop consists of three expressions.
The first expression is initialization, followed by a test expression, and finally,
the update (or change) expression; each expression is separated by a semicolon.
The following is the program’s for loop:

for(value = 0; value < 5; valuet++)

First, value is initialized to . The middle expression (value < 5) is the test
expression. The test expression is evaluated; if the result is true, the loop’s
body is executed, otherwise, the program exits the loop. After all statements in
the body have executed, the third expression is evaluated. After the third
expression is evaluated, control returns to the test expression.

Comments

Each of the C++ loops can have either a single statement or multiple statements
enclosed within braces. All of the loop examples in this How-To use braces to
delineate the loop's body. For example, the for loop can be written this way:

for(value = 0; value < 5; value++)
cout << "The value of value is: " << value << endl ;

You can do this because this for loop only has one statement associated with
it. It is more appropriate to use braces, even if you only have one statement
associated with a loop. The reason is that if you come back to add another
statement to the single-statement loop, you might forget to add the braces. To
demonstrate, assume you want to add a calculation that is performed for every
iteration of the loop.

for(value = 0; value < 5; value++)
cout << "The value of value is: " << value << endl ;
paycheckAmount = hours * value ;

Everything appears fine; the indentation shows that the new statement is
part of the loop’s body. Don't be fooled by appearances. By visual inspection, it
appears that the program will execute both statements following the for expres-
sion. In reality, only the first statement will execute for every iteration of the
loop. The second statement will only execute after the loop is finished. To
correct the problem, the source code needs to look like the following:

for(value = 0; value < 5; value++)

{
cout << "The value of value is: " << value << endl ;
paycheckAmount = hours * value ;

= 25 pa
CREATE A PROGRAM THAT USES ONE OR MORE FUNCTIONS

Now, everything will work as expected.

The third (update) expression in a for loop is not restricted to using the
increment operator ++. You might want to use the decrement operator - -. You
can also increment the value by two, three, or more. The expression can also be
the result of a multiplication. The following will increment value by 20 in the
third expression:

for(value = 1; value < 100; value = value + 20)

{

cout << "The value of value is: " << value << endl ;

)

}

COMPLEXITY
BEGINNING

1.4 Howdol...

Create a program that uses one or
more functions?

Problem

I am ready to move on to the more advanced features of the C++ language,
specifically functions. | know that functions are used to accomplish specific
tasks. | need to know how to declare and define functions.

Technique

Functions in C++ are the basic building blocks to modularize a program. The
technique for creating functions in C++ is the same as it is in any other
language. You must decide the specific functionality required for your
application. If possible, you should make your functions as general as possible.
This allows you to use a function in other programs.

Steps

Change to the base source directory and create a directory named FUNC.

Start up your text editor and type in the following source code:

// func.cpp - program to demonstrate a function in C++
#include <iostream>

using namespace std ;

long multiply(long left, long right) ;

int main()

{

long valuel = 0, value2 = 0 ;

m CHAPTER 1
A QUICK INTRODUCTION TO THE LANGUAGE

cout << "\nProgram to multiply two integers " ;

cout << "and display the result. " << endl ;
for(long result = 1; result != @; /*empty expression*/)
{

valuel = value2 = result = 0 ;

cout << "\nTwo zeros will end the program." << endl ;
cout << "Enter the first integer (and enter key): " ;
cin >> valuel ;

cout << "Enter the second integer (and enter key): " ;
cin >> value2 ;

if(valuel == 0 && value2 == 0)
break ;

result = multiply(valuel, value2) ;

cout << valuel << " multiplied by " ;

cout << value2 << " = " << result << endl ;
}
return 0 ;

}

// Multiplies the two arguments
// together and returns the results
long multiply(long left, long right)
{
long result = left * right ;
return(result) ;

}
Save the file as LoopP.cPP and exit the editor to the command line.

Compile and link the LooP. cpp source file.

- N

Run the program; the output should be as follows:

Program to multiply two integers and display the result.
Two zeros will end the program.

Enter the first integer: 4

Enter the second integer: 4

4 multiplied by 4 = 16

How It Works

If you have been following the previous How-Tos, you will notice a new line of
code after the using namespace std line;

long multiply(long left, long right) ;
This is referred to as a function declaration. It is the function’s signature. The

declaration specifies the number or arguments, if any, and their data type. The
declaration also shows the return type (if the function returns a value). In this

o 27

CREATE A PROGRAM THAT USES ONE OR MORE FUNCTIONS

declaration, multiply is the name of the function. The function accepts two
arguments; both of them are of type 1ong. The first argument has the name
left and the second argument has the name right. The result of the function
call, the return value, is of type 1ong. The return value does not have a name
because a function can only return a single data type.

The program begins with the declaration and initialization of two long
variables, value1 and value2. These two variables will be used to hold the
values that will be passed to the function multiply. Next, the program displays
an informational message telling the user the intent of the program.

In How-To 1.3, you learned how to use a for loop. This for loop is used to
continually accept new input for subsequent calculations. One difference
between this for loop and the one demonstrated in the previous How-To is that
the third expression is empty.

for(long result = 1; result != @; /*empty expression*/)

This is perfectly legal; an empty expression here makes sense because you do
not need to update a counting variable. This for loop will check that the value
in result is not equal to o.

The first statement within the for loop initializes the variables value1,
value2, and result to @. Next, the program displays a message to the user how
to quit the program.

The next cout statement displays a message asking the user to enter the first
of two values. The subsequent cin statement gathers input from the user and
places the value into the variable named valuet.

Another message is displayed prompting the user to enter the second value
required for the calculation. The cin statement accepts input from the user and
places that value in value2.

An if statement is introduced. This if statement is composed of a
compound expression. The equality operator == and logical operator && are
both used within the if statement. The following verbally expresses the
statement: “If the contents of value1 are @ AND the contents of value2 are o,
break out of the for loop.” If either expression resolves to o, the program
breaks out of the loop. Otherwise, the program continues executing to the next
statement.

The following statement from the program:

result = multiply(valuel, value2) ;

is a call to the function named multiply. Notice that the two values gathered
from the user are passed as arguments to the function. The function uses these
two values to perform the multiplication. The order of evaluation for this
statement is as follows: the function is called first, and then the result of the
function call (the return value) is assigned to the variable named result.

m CHAPTER 1
A QUICK INTRODUCTION TO THE LANGUAGE

The next two statements after the function call display the results of the
calculation.

The definition for the function multiply is found beyond main’s closing
brace. A function definition has a body and contains program statements
(a declaration does not). The two comments that precede the function name
proclaim the intent of the function. As a rule, you should provide more
information about a function than is provided in this example. A function
definition header might look like this:

// name: multiply
// description: this function multiplies the two

/1 arguments supplied and returns the result.

// arguments:

/1l long left - one of two operands for the calculation

/1 long left - second of two operands for the calculation

// return: long - the result of the multiplication

The first statement within the multiply body is the declaration of a 1ong
variable named result. Notice that the name result is declared here and in
the main function. The result variable declared in main is not visible to this
function, so there is no name clash between the two variables. The variable
result comes into scope at its declaration and continues to exist until
multiply’s closing brace. This statement consists of the expression left *
right; the result of which is assigned to the variable result. The last line of
code in the function is the return statement. The job of the return statement
is to return the result of the multiplication.

Comments

Error checking is not included in this How-To. The intent of this How-To is to
demonstrate the use of functions and function calls. Because of this, the
example must be as brief as possible.

It is assumed that the user will enter valid numbers for the inputs requested.
Particularly, two statements in the program

cin >> valueil ;
/...
cin >> value2 ;

are used to gather input from the user. It is hoped that a user will supply a
valid integer for each prompt. Unfortunately, as is usually the case, users enter
data that you do not expect. Error handling will be addressed in How-To 1.7.
Suffice it to say that the results will be unpredictable if you enter anything other
than numeric data.

The variables (actually the values) passed to the function multiply are
copies of those values. This is referred to as pass-by-value; the C++ language
inherits this trait from the C language. When the compiler sees the following

s 29 p

USE THE DERIVED DATA TYPES SUCH AS ARRAYS AND POINTERS

line of code:

result = multiply(valuel, value2) ;

it will create a copy of value1 and value2 to be passed on to the function
multiply. The original variables passed as arguments are not operated on. The
two arguments left and right are local to the function multiply. Any changes
you make to those variables will not be reflected back to the original variables
valuet and value2 in main.

Within the function multiply, the variable result serves two purposes. It is
used to hold the result of the multiplication and is used as the argument to the
return statement. The compiler makes a temporary copy of result and returns
it to the calling function.

COMPLEXITY
INTERMEDIATE

1.5 Howdoll...
Use the derived data types such
as arrays and pointers?

Problem

I have written a few C++ programs now and feel very confident. | built
programs to take advantage of loops, simple variables, user input and message
output, and user defined functions. | need to now explore the use of more
advanced data types such as arrays, structures, and pointers.

Technique

If you have an understanding of C++5 basic data types, learning to use the
advanced types will come easy. The technique for using derived types is no
different from using plain ol’ data (POD) types. Most of the derived types are
just aggregates of the PODs. This How-To will also demonstrate the use of
pointers and references. As usual, you will learn about these advanced types
from the source code that follows.

Steps

Start at you base source directory and create a new subdirectory named
TYPES.

As usual, fire up your favorite text editor and type in the following source
code:

CHAPTER 1

A QUICK INTRODUCTION TO THE LANGUAGE

/] types.cpp - program to demonstrate the

// advanced types used in C++

#include <iostream>

using namespace std ;

void multiply(long &left, long &right, long &result) ;
void getValue(const char *message, long *value) ;

struct values {
long valuel ;
long value2 ;
long result ;
Y
const int MAX_LEN = 20 ;

int main()

{

values vals ;

cout << "\nProgram to multiply two integers " ;
cout << "and display the result. " << endl ;
cout << "It will also show the contents of an array" << endl ;

vals.valuel = vals.value2 = vals.result = 1L ;
while(vals.result != 0)

{

vals.valuel = vals.value2 = vals.result = 0 ;
cout << "\nTwo zeros will end the program." << endl ;

getvalue("Enter the first integer: ", &vals.valuel) ;
getvValue("Enter the second integer: ", &vals.value2) ;

if(vals.valuel == @ && vals.value2 == 0)
break ;

multiply(vals.valuel, vals.value2, vals.result) ;
cout << vals.valuel << " multiplied by " ;
cout << vals.value2 << " = " << vals.result" << endl ;

}

int ival ;
char message[MAX_LEN +1] ;

for(ivVal = 0; ivVal < MAX_LEN; ival++)
message[ival] = 'A' + ival ;
message[ival] = '\x00' ;
cout << "\nContents of message[" << message << ']' << endl ;
char *pc = message ;
for(ival = 0; ivVal < MAX_LEN; ival++, pc++)
*pc = '\x00' ;

cout << "\nContents of message[" << message << ']' << endl ;

return 0 ;

1.5

USE THE DERIVED DATA TYPES SUCH AS ARRAYS AND POINTERS

}

// multiply two numbers and put result in third argument
void multiply(long &left, long &right, long &result)
{

}

result = left * right ;

// display message, get value
void getValue(const char *message, long *value)

{
cout << message ;
long result = 0 ;
cin >> result ;
*value = result ;
}
Save your work in a file named TYPES.CPP and exit the editor back to the

-

command line.
Run the compiler and linker on the source file.

Now, run the program. The output should be similar to the following:

Program to multiply two integers and display the result.
It will also show the contents of an array

Two zeros will end the program.
Enter the first integer: 4
Enter the second integer: 4

4 multiplied by 4 = 16

Two zeros will end the program.
Enter the first integer: 0
Enter the second integer: 0

Some letters: ABCDEFGHIJUKLMNOPQRST
Contents of message[]

How It Works

Your journey begins with lines 5 and 6:

void multiply(long &left, long &right, long &result) ;
void getValue(const char *message, long *value) ;

These function declarations look similar to the declaration in How-To 1.4.
The first declaration accepts three arguments, each of which is a reference to a
long. The second declaration accepts two arguments that are pointers.

EE

CHAPTER 1

A QUICK INTRODUCTION TO THE LANGUAGE

The function multiply has three arguments that are references to long. A
reference is exactly what its name implies—it refers to some other object. The
reference itself is not the object of interest; the object of interest is accessed
using the reference.

The getvalue function owns two arguments. One is a pointer to a const
char and the second is a pointer to long. A pointer, as its name implies, refers
(or points) to some other object. A pointer, as with a reference, is not the object
of interest; the object of interest is accessed using the pointer. The argument
value is a variable, just as you've seen in previous How-Tos; it’s just that this
variable happens to be pointing to some object (variable) that exists somewhere
else in the program. Do not concern yourself with the contents of the pointer
itself. You should only be interested in the object to which the pointer points.

You might be asking, “If a reference and a pointer both refer to some other
object, what is the difference between the two?” This is a common question and
deserves an answer. | mentioned that a pointer is a variable (in the sense that its
contents can change), but I did not imply the same for references. Therefore, a
difference is that you can change what the pointer points to. With a reference,
you cannot do this; a reference must refer to some object. After the reference
refers to an object, you cannot change the reference to refer to another object.
This implies that a reference always refers to a single object. Do not let me
mislead you, however: A pointer can be constant, which means that it can only
point to a single object. The following declaration shows this:

char theChar = 'B' ;
char * const pconst = &theChar ;

This declaration states that pconst is a constant pointer to a char—namely,
theChar. Although pconst can change the value stored in theChar, pconst
cannot point to anything except thecChar.

So, what do a reference and a pointer store as their value? Quite simply, they
store the address of the object that they refer to. This is how a reference and a
pointer gain access to an object. Think of it this way: Every house (or office,
and so on) has an address. In your address book, you have the address written
down for some friend. The address in your address book is not the actual
house, but is simply a reference to the location of the house. You first look up
the address and then use it to locate and access the house.

Beginning on line 8, a struct declaration is introduced:

struct values {
long valuel ;
long value2 ;
long result ;

Y

The keyword struct is really shorthand for structure. A struct is considered
a user-defined type. A struct is a collection of one or more types. The types
(variables) can be PODs, arrays, or other structs. Notice the declarations of

1.5

USE THE DERIVED DATA TYPES SUCH AS ARRAYS AND POINTERS

the variables within the struct. The declarations are no different from
declaring global or local variables. The difference with a struct is that the
variable declarations are contained within the struct.

The declaration simply defines the layout for the struct; it is not a variable
declaration. Consider a struct declaration as a template only; no memory is set
aside for a struct declaration. The first statement within the main function
declares the variable values of type struct, as shown in the following code:

values vals ;
This declaration is the same as declaring variables of type int or float;
memory is allocated for the object. You can now access the individual member

variables of the struct. The dot (membership) operator (.) is used to access
the member variables of a struct through a struct variable. For example,

vals.valuel = 0 ;

assigns the value o to the member variable value1 for the object vals.

You can initialize a struct variable at the time of declaration also, just as
you can with simple (POD) variables. You specify an appropriate initialization
value for each member variable, separating each value with a comma. The
initializations are enclosed within a pair of braces. The following snippet of
code demonstrates this:

values someValues = { 10L, 20L, 30L } ;
This statement creates a variable of type struct values named somevalues.
The three elements of values are each initialized to the values 1oL, 2oL, and

3oL, respectively. The postfix L on each number says that these constants are
long.

The next three lines of code send a message to the standard output
describing the intent of the program. The next line of code

vals.valuel = vals.value2 = vals.result = 1L ;
initializes the individual members of the variable vals to the value 1L. You
could initialize vals using structure initialization as demonstrated above.

The next line of code, a while loop, evaluates the variable vals.result for a
non-zero value. If the value becomes o, the loop terminates.

The first line of code inside the loop
vals.valuel = vals.value2 = vals.result = 0 ;
initializes the member variables of vals to 0. The intent is to put the member
variables into a known state.

The next line of code displays a message to the user, giving directions on the
use of the program.

EEE—

m CHAPTER 1
A QUICK INTRODUCTION TO THE LANGUAGE

The next two lines of code

getValue("Enter the first integer: ", &vals.valuel) ;
getValue("Enter the second integer: ", &vals.value2) ;

call the function getvalue, with each call passing two arguments to the func-
tion. The first argument, a pointer to a const char, is a string of text that is
displayed to the user. The second argument is a pointer to a Long. Notice that
each argument is separated by a comma.

The second argument’s name is prepended with the address-of operator.
Because a pointer must contain an address to be useful, the address-of operator
is required to represent the address of the variable. Remember that arguments
are passed by value, so the expression &vals.value1 yields the address of the
variable. Because the argument is a copy of the actual object, and the object is
the address of the variable, the argument is the object expected: a pointer to a
long.

Let’s examine the getvalue function.

// display message, get value
void getValue(const char *message, long *value)

{
cout << message ;
long result = 0 ;
cin >> result ;
*value = result ;
}

The first argument means message iS a pointer to a const char. Effectively,
you can change what the pointer points to, but you cannot change the contents
to which the pointer points. The second argument is a pointer to a long; you
can alter the contents (change the value) to which the pointer points. The first
line in the function body displays the contents of message to the screen. The
next line creates a local variable of type 1ong named result. This variable is
used to capture the required input from the user. The last line in the function’s
body assigns the value contained in result to the variable to which value
points. Notice that the dereference operator (*) is used to perform this magic.
The dereference operator is used to access the object through the pointer.
Remember that value does not contain a long value; it merely refers to a long
variable. Because the pointer value points to vals.valuet, it is vals.valuet
that is the recipient of the value.

Back in the main function, the next call to getvalue performs the same
functionality, eventually assigning a 1ong value to vals.value2.

The if statement checks to see whether both vals.value1 and vals.value2
are equal to 0. If so, the while loop is terminated. The next line of code within
the loop

multiply(vals.valuei, vals.value2, vals.result) ;

s EEE

USE THE DERIVED DATA TYPES SUCH AS ARRAYS AND POINTERS

calls the function multiply, passing three arguments. In this instance, the target
arguments are references to 1ongs. Here is the function again, in its entirety:

// multiply two numbers and put result in third argument
void multiply(long &left, long &right, long &result)

{
result = left * right ;

}

The only statement within the body of the function is an expression,
multiplying the two arguments together to yield the result. The result of the
multiplication is assigned to vals.result through the reference argument
result. Notice that the dereference operator is not required with references
(to access the object referred to). You do not have to use the dereference
operator because dereferencing happens automatically behind the scenes. This
allows a more natural notation. For example, this

*ptrValue = result ; // assign through pointer

is not as intuitive as

refValue = result ; // assign through reference

The last two lines in the while loop display the operands of the
multiplication and the result. The loop will continue until vals.value1 and
vals.value2 equal o.

Beyond the while loop’s body, the next line of code creates a variable of type
int named ival. On the next line, a second variable is created: an array of char
named message. An array is an aggregation of a single data type. You could, for
example, create an array of 12 ints, each individual element representing the
number of days in each month. In this program, message is a variable that
consists of MAX_LEN (20) contiguous chars. Strings in C++ are represented as
an array of char, terminated by the null char (hex 0x00). A How-To later in
the book will introduce the C++ string class. The string class is an optional
and more efficient way to create and use strings in C++.

After the two variable declarations, a for loop is used to assign a value to
each element of the char array. The first offset in an array is @, not 1. This is a
source of error for many C++ novices; it is referred to as the "one-off” error.
(The problem actually occurs at the end of the array; most developers will
access the element one beyond the end of the array.) Take a look at the
initialization section of the for loop; ival is initialized to o.

The ival variable serves three purposes. First, it is used as an incrementing
variable; it starts at @ and counts up to MAX_LEN. Second, it is used as a
subscripting (or indexing) value to access the individual elements of the array.
Brackets are used as a notation for subscripting the individual elements of an
array. A variable can be used as the indexing value. This is in contrast to the

CHAPTER 1

A QUICK INTRODUCTION TO THE LANGUAGE

declaration of an array; the value that specifies the number of elements in an
array must be a constant. The third functionality of ival is to create a unique
letter of the alphabet to be stored in each element. The for loop’s statement

message[ival] = 'A' + ivVal ;
contains the expression
'A' + ival
The result of this expression is the character (constant) A added to the value
of ival. After each pass through the loop, the result of the expression will be

the next letter in the alphabet. So, as soon as the loop terminates, the array
message Will contain the first 20 letters of the alphabet.

The statement after the for loop assigns the null character to the last array
element. The next line of code, the cout statement, prints out the contents of
the array. The output from this statement appears as follows:

Contents of message[ABCDEFGHIJKLMNOPQRST]

Let’s look at the next three lines of code in the program:

char *pc = message ;
for(ival = 0@; iVal < MAX_LEN; iVal++, pc++)
*pc = '"\x00' ;

The first line defines a pointer to a character and is initialized to point to the
array message. Initially, pc points to the first element of message. This for loop
is used to set each element of the array to the null character. The variable ival
is used as the incrementing variable, counting up to MAX_LEN. Notice that the
update expression of the for loop contains two expressions. Both ival and pc
are incremented by 1. This facilitates the pointer pc visiting each element of the
array in turn. The for loop’s statement

*pc = '\x00' ;
uses the dereference operator to assign the null character to the location

currently pointed to by pc. The line of code after the for loop prints out the
contents of the array. You should see this:

Contents of message[]

Notice that no letters are printed between the brackets. This is because cout,
when printing an array of char, stops printing when it sees the null character.
Because the previous for loop set each element of the array to the null char-
acter, there is nothing to print.

The last line of code in main’s body is the return statement, effectively
ending the program.

1.6

CREATE DATA WHEN THE PROGRAM IS RUNNING

Comments

Pointers and references are very powerful mechanisms. They provide you with
the ability to access objects that reside somewhere in memory. You can think of
pointers and references as proxy objects.

Be cautious with pointer use; pointers are the root cause of many headaches.
Wild pointers have brought down many good applications. Invalid pointers can
be hard to detect because the path through a program is usually never the same
for each invocation.

Use references instead of pointers whenever possible. In fact, you should
always choose references over pointers.

Arrays are a convenient feature to aggregate like items into one place. Arrays
and pointers are usually used together, with pointers being used to access the
elements of an array. Accessing an array is much faster using a pointer than
using array-offset notation.

COMPLEXITY

INTERMEDIATE

1.6 Howdoll...

Create data when the program is
running?

Problem
I know how to create global and local variables, but at times | don't know
exactly how many variables | will need until runtime. Is there a way to
dynamically create simple variables and derived types at runtime?

Technique

The technique required to allocate memory is quite easy. The tricky part is the
upkeep of allocated memory. When | say upkeep, | mean you are responsible
for the creation and deletion of allocated memory. The C++ language is very
powerful and offers you a lot of leverage, but you are also accountable for your
actions. Keep this in mind when dealing with memory allocation.

The following source code demonstrates how to allocate and deallocate
memory for various data types. The source also includes an example of
dynamically allocated and deallocated derived types, namely arrays.

CHAPTER 1

A QUICK INTRODUCTION TO THE LANGUAGE

Steps

Create a new subdirectory named CREATE under your base source

directory.

Start up your editor and type in the following source code:

// create.cpp - program to demonstrate the

// allocating and deallocating of memory in C++
#include <iostream>

using namespace std ;

struct values {
long valueil ;
long value2 ;
Y
const int MAX_ELEMENTS = 20 ;

int main()

{
int *intArray ;
intArray = new int[MAX_ELEMENTS] ;
inti=20;

for(i = @; i < MAX_ELEMENTS; i++)
intArray[i] = 1 ;

for(i = @; i < MAX_ELEMENTS; i++)

cout << "intArray[i] = " << intArray[i] << endl ;

delete [] intArray ;
values *sArray = new values[MAX_ELEMENTS] ;

for(i = @; i < MAX_ELEMENTS; i++)

{
sArray[i].valuel = i ;
sArray[i].value2 = i * 10 ;

}

for(i = @; i < MAX_ELEMENTS; i++)

{
cout << "sArray[i].valuel = " << sArray[i].valuel
cout << ", sArray[i].value2 = " << sArray[i].value2 <<
Oendl ;

}

delete [] sArray ;

return(0) ;

}

Save your work in a file named GREATE.cPP and return to the command

line.

1.6

CREATE DATA WHEN THE PROGRAM IS RUNNING

Run your compiler and linker on CREATE. CPP.

The output, when run, should appear as in the following:

intArray[i] = 0
intArray[i] = 1
intArray[i] = 2

intArray[i] = 19

sArray[i].valuel = @, sArray[i].value2 = 0
sArray[i].valuel = 1, sArray[i].value2 = 10
sArray[i].valuel = 2, sArray[i].value2 = 20

sArray[i].valuel = 19, sArray[i].value2 = 190

How It Works

Let’s examine the code to see what is happening. Remember, if your compiler
gives you an error for either of these two lines

#include <iostream>
using namespace std ;

simply place block comments (//) in front of the second line (or delete it) and
change the first line to read iostream.h.

Moving through the source file, the next item you see is the declaration of
struct values. It contains two int variables, valuet and value2.

The next line of code declares MAX_ELEMENTS to be a constant int. This
constant is used to declare the maximum number of elements to be allocated.

Look at the first two statements in function main:

int *intArray ;
intArray = new int[MAX_ELEMENTS] ;

The first statement declares intArray to be a pointer to int. The second
statement is a new expression. In C++, the result of a new expression is a pointer
to the allocated type. This is why intArray is declared as a pointer to int. The
expression on the right side of the assignment operator states “Allocate a block
of memory capable of holding MAX_ELEMENTS (20) intS.” The memory
manager will attempt to locate a contiguous area of memory large enough to
hold the 20 ints. If operator new() obtains the requested memory, it returns a
pointer to int, otherwise the new expression throws an exception. You will
examine exceptions in How-To 1.7.

In C++, a new expression (consisting of operator new()) is used to allocate
memory from the free store (also referred to as the heap). The free store is an
area of memory used for dynamically allocated objects. The free store expands
and contracts as objects are allocated and deallocated.

CHAPTER 1

A QUICK INTRODUCTION TO THE LANGUAGE

There are three types of new expressions. One allocates a single object of
some type, the second allocates an array of objects, and the third type is called
placement new. The following example demonstrates all three different types of
new expressions:

int *intArray1l, *intArray2, *intPlaced ;
intArray1 = new int(5) ;

intArray2 = new int[MAX_ELEMENTS] ;

intPlaced = new (memoryBlock) int ;

delete []

The first statement declares three pointers to int. The second statement
allocates a single int and that int contains the value 5. The parenthesized
initializer expression is optional. The initializer expression is used to initialize an
allocated object to some known value.

The second statement is array allocation. The value within the brackets tells
operator new() how many objects to allocate. You cannot use the initializer
expression when allocating arrays. (The exception to this rule is when allocating
user-defined objects.)

The last statement allocates a single int; this int is placed in an area of
memory specified within the parentheses after the keyword new. Memory is not
actually allocated with placement new, but a pointer to the object is returned.
The memory block must be a static memory block or allocated with a new
expression. It is your responsibility to ensure that the memory block is properly
deallocated.

The next two lines of code consist of a for loop and its statement. The loop
is used to assign a value to each individual int allocated.

The next two lines consist of a second for loop that prints out the value of
each individual int, thus verifying the contents of each.

The next line of code
intArray ;
is the delete expression. This particular form is the array delete expression; it
is identified by the bracket [] notation. This form is used to deallocate an array

of objects. To deallocate a single object, use operator delete without the
bracket notation.

The next statement

values *sArray = new values[MAX_ELEMENTS] ;

allocates MAX_ELEMENTS (20) of type struct values. The for loop that follows
initializes each member of each allocated struct to a known value. The
subsequent for loop then prints out the value of each member of each allocated
struct.

The statement that follows:

delete [] sArray ;

1.7

CREATE A PROGRAM TO PERFORM EXCEPTION HANDLING

deallocates the array of structs sArray. The last line in the main function ends
the program.

Comments

A thorough understanding of pointers is required when dealing with allocated
memory. This is because the new expression returns a pointer to the allocated
type.

Allocating memory at runtime helps with the efficiency of an application.
Massive amounts of data storage do not have to be statically declared at compile
time. Memory use can be tailored to the needs of the application.

Dynamically allocating memory can also cause frustration for many
development teams. You must always ensure that allocated memory is properly
reclaimed (deleted) when it is no longer required. This is the main cause of
memory leaks.

COMPLEXITY

-

INTERMEDIATE

1.7 Howdoll...

Create a program to perform
error handling, specifically
exception handling?

Problem
I have heard that exception handling is a way to respond to errors encountered
during the execution of a program. | have seen examples of C++ exception
handling, but | need to know how to apply the mechanism for use in my
programs.

Technique

The C++ language Standard defines a standardized way of handling program
anomalies at runtime. Such anomalies occur if your application attempts to
acquire memory that is unavailable, tries to open a file that does not exist, or a
divide-by-zero error occurs. By using the exception handling mechanism, your
application can gracefully recover from errors.

In this How-To, you will create a program that will handle a number of
exception conditions. In addition, the program presented here will demonstrate
how write functions that throw exceptions.

CHAPTER 1

A QUICK INTRODUCTION TO THE LANGUAGE

Steps

Change to your base source directory and create a new subdirectory
named EXCEPT.

Fire up your source code editor and type in the following code into a file
named EXCEPT.CPP:

/| except.cpp - program to demonstrate the
// use of exception handling in C++
#include <iostream>

#include <new>

#include <fstream>

#include <string>

using namespace std ;

static void acquireMemory(int elements) ;
static void calculate(int value) throw (int) ;
static void noThrow(void) throw () ;

20 ;

const int MAX_ITERATIONS =
= 30000 ;

const int MAX_ELEMENTS

struct LargeStruct

{
double bigdi[MAX_ELEMENTS] ;
double bigd2[MAX_ELEMENTS 1 ;
double bigd3[MAX_ELEMENTS | ;
double bigd4[MAX_ELEMENTS 1 ;
}s

int errorCode = 0 ;
int main()
int numerator = 10 ;

int divisor = 0 ;
int result = 0 ;

try
{
result = numerator / divisor ;
cout << "\nExpression succeeded!" << endl ;
}
catch(...)
{
cout << "\nDivide-by-zero exception!" << endl ;
}
try

~ El

CREATE A PROGRAM TO PERFORM EXCEPTION HANDLING

for(divisor = 10; divisor >= @; divisor--)

{
result = numerator / divisor ;
cout << numerator << '/' << divisor ;
cout << " == " << result << endl ;
}
}
catch(...)
{
cout << "for() divide-by-zero exception!" << endl ;
}
try
{
acquireMemory(30000) ;
}
catch(string s)
{
cout << s << endl ;
}
catch(...)
{
cout << "Exception thrown for " ;
cout << "acquireMemory()" << endl ;
}
try
{
for(int i =1; i >=0; i--)
{
calculate(i) ;
cout << "calculate(" << i ;
cout << ") succeeded" << endl ;
}
}
catch(int ec)
{
cout << "exception for calculate()" << endl ;
}

return(0) ;

}

void acquireMemory(int elements)

{
long cnt = elements * MAX_ELEMENTS ;

LargeStruct *s = (LargeStruct *)0 ;

try
{

s = new LargeStruct[cnt] ;

}

m CHAPTER 1
A QUICK INTRODUCTION TO THE LANGUAGE

catch(bad_alloc e)

{
cout << "Caught bad_alloc" << endl ;

}

catch(...)

{
cout << " allocation exception " << endl ;
throw ;

}

if(s == (LargeStruct *)0)
throw string("s is null in acquireMemory") ;

else
delete [] s ;
}
void calculate(int value)
{
if(value ==)
{
errorCode = 1 ;
throw errorCode ;
}
}
Save the file and return to the command line.
Run your compiler and linker on EXCEPT.CPP.
The output should appear as follows:
Divide-by-zero exception!
10/10 == 1
10/9 == 1
10/8 == 1
10/7 == 1
10/6 == 1
10/5 == 2
10/4 == 2
10/3 == 3
10/2 == 5
10/1 == 10

for() divide-by-zero exception!
s is null in acquireMemory
calculate(1) succeeded
exception for calculate()

How It Works

You begin your journey with four preprocessor directives at the top of the
source file:

#include <iostream>
#include <new>

1.7

CREATE A PROGRAM TO PERFORM EXCEPTION HANDLING

#include <fstream>
#include <string>

The header file new contains a declaration for the standard exception class
bad_alloc. The class bad_alloc is derived from the exception handling class
exception. You must include new to use the functionality of bad_alloc.

After the namespace using directive, three functions are declared. These
functions will be called by the main function. The second function declaration

static void calculate(int value) throw (int) ;

contains an exception specification as part of its declaration. An exception
specification is specified using the keyword throw, followed by a list of types
within enclosing parentheses. An exception specification identifies the types of
exceptions that a function will throw. The function declaration for calculate
specifies that it will throw an int and only an int.

The last function declaration

static void noThrow(void) throw () ;

try
{

result

states that the function noThrow is guaranteed not to throw any exceptions;
hence the empty specification list. By the way, noThrow is not defined in the
program,; this declaration only serves as an example of an empty exception
specification.

Two constants are defined following the function declarations. These are
merely used to specify array dimensions.

Next, a struct named LargeStruct is declared, encapsulating four
attributes. Note that this struct is rather large (and purposefully so). I want to
demonstrate the behavior of an application that fails to allocate memory.

The next definition, errorcode, is an integer that will be used as an
argument to a throw statement.

The first three statements inside the main function are integer definitions
used for calculations later in the source. Next, you find the first occurrence of
exception-handling code. That section of code follows:

= numerator / divisor ;

cout << "\nExpression succeeded!" << endl ;

}
catch(...

{

)

cout << "\nDivide-by-zero exception!" << endl ;

}

e

CHAPTER 1

A QUICK INTRODUCTION TO THE LANGUAGE

In a nutshell, the program attempts to execute the statement within the try
block; if it is unsuccessful, control is transferred to the catch block. Any
statements following the statement throwing an exception will be disregarded. If
a statement within a try block does not throw an exception, control continues
on to the next statement, if one exists.

A try block consists of the keyword try, followed by an opening brace, one
or more program statements, and a closing brace. It is assumed that one or
more statements within a try block will throw an exception; if they don', there
is no need to use the exception mechanism.

A try block is the same as any other C++ block. Variables can be declared
within the block, but be forewarned that those variables will not be accessible
outside the try block.

One or more catch blocks must follow a try block. A catch clause is

sometimes referred to as an exception handler. The first catch block in the
program is shown here:

catch(...)
{
cout << "\nDivide-by-zero exception!" << endl ;
}
This is a unique catch clause, commonly referred to as the “catch all” clause.
The syntax for this catch clause consists of an ellipsis (three periods) within the
catch declaration. The “catch all” catch block must be the last one, if more
than one catch block is defined. If the preceding try block throws an
exception, the cout statement within the catch clause will execute, proclaiming
a divide-by-zero exception.
The next try/catch in the program is
try
{
for(divisor = 10@; divisor >= 0Q; divisor--)
{
result = numerator / divisor ;
cout << numerator << '/' << divisor ;
cout << " == " << result << endl ;
}
}
catch(...)
{
cout << "for() divide-by-zero exception!" << endl ;
}

This for loop is surrounded by a try block. The loop will continue to
execute until divisor is less than o or if an exception is thrown. Obviously, the
loop will never reach -1 because a divide-by-zero exception occurs when
divisor’s value becomes o.

1.7

CREATE A PROGRAM TO PERFORM EXCEPTION HANDLING

The next try/catch section of code follows:

try
{
acquireMemory(30000) ;
}
catch(string s)
{
cout << s << endl ;
}
catch(...)
{
cout << "Exception thrown for " ;
cout << "acquireMemory()" << endl ;
}

Within this try block is a call to a function named acquireMemory.
Obviously, this function potentially throws an exception of some type. Let’s
jump ahead and see what is happening within the function acquireMemory ().
The function’s body is shown in the following code:

void acquireMemory(int elements)

{
long cnt = elements * MAX_ELEMENTS ;
LargeStruct *s = (LargeStruct *)0 ;

try
{
s = new LargeStruct[cnt] ;

}
catch(bad_alloc e)

{

}
catch(...)

{

cout << "Caught bad_alloc" << endl ;

cout << "allocation exception" << endl ;
throw ;

}

if(s == (LargeStruct *)0)

throw string("s is null in acquireMemory") ;
else

delete [] s ;

The function accepts an integer argument, specifying the number of
elements to allocate. The first two statements within the function define a
variable that holds the total number of elements to allocate and a declaration of
a pointer to LargeStruct, respectively. Next, a try block is encountered,
followed by two catch clauses. Within the try block, an attempt is made to

m CHAPTER 1
A QUICK INTRODUCTION TO THE LANGUAGE

allocate an array of LargeStructs. If the allocation fails and new throws a
bad_alloc exception, the first catch clause processes the exception. If any
other exception is thrown, it will be handled by the “catch all” handler. Notice
the use of throw within the “catch all” handler; this instructs the handling
mechanism to throw the same exception up to the next catch handler.

The code that follows the “catch all” handler checks to see if the pointer is o.
It is possible that your compiler’s implementation of new does not throw an
exception. The alternative is to check the value of the pointer; a return value of
o indicates failure, otherwise the pointer will contain a valid memory address.
In the example, if s is @, the program throws a string to the calling function.

Let’s reexamine the calling block:

try
{
acquireMemory(30000) ;
}
catch(string s)
{
cout << s << endl ;
}
catch(...)
{
cout << "Exception thrown for " ;
cout << "acquireMemory()" << endl ;
}

The first catch clause handles an exception of type string. This handler
will process the throw string statement in function acquireMemory. If any
other exception is thrown, the “catch all” handler will process the exception.
The exception mechanism searches all the catch clauses, looking for the clause
that can process the exception.

Moving through the source code, you come to the next try/catch section,
shown in the following code:

try
{
for(int i = 1; i >= @; i++)
{
calculate(i) ;
cout << "calculate(" << i ;
cout << ") succeeded" << endl ;
}
}
catch(int ec)
{

cout << "exception for calculate()" << endl ;

}

- E—
CREATE A PROGRAM TO PERFORM EXCEPTION HANDLING

The try block surrounds a for loop. Within the for loop, the function
calculate is called. Notice that the catch clause will handle an exception of
type int. Now turn your attention to the function calculate to see what is
happening there. The function’s source is as follows:

void calculate(int value)

{
if(value == 0)
{
errorCode = 1 ;
throw errorCode ;
}
}

The argument’s value is compared to 0; if the expression is true, the two
statements within the if block are executed. The first statement assigns the
value 1 to errorcCode; this variable is defined in the global namespace. The next
line is a throw statement, throwing errorcCode.

Comments

An optional method for error handling is to return user-defined codes for a
function call. This method was commonly accepted before the specification of
the exception handling mechanism. In fact, this style is still practiced today. The
following example demonstrates this style:

bool openFile(const char *name)

{
bool successfullyOpened = false ;
ifstream in(name) ;
if(in)
{
/...
}
return(successfullyOpened) ;
}
/...
if(openFile("sample.txt") == true)

/...

The return value from a function specifies the success or failure of its
operation. Many third-party libraries use the int type to specify error codes.
For example, a library that manipulates a database might experience different
types of errors depending on the access context. As a rule, the value o is
commonly used to signify success and non-zero values as error codes.

What happens if an exception is thrown, but not caught? The function
std::terminate will be called.

CHAPTER 1

A QUICK INTRODUCTION TO THE LANGUAGE

It is good programming practice to include exception specifications as part of
your function declarations. This permits client programmers to know the types
of exceptions that your functions will throw. Remember that an empty
exception specification guarantees that the function will not throw any
exceptions. The lack of an exception specification tells client programmers
“This function might throw any number of exceptions.”

_ CHAPTER 2
OBJECT

ORIENTATION—

- 1RHeEORY AND
.
- PrRACICE
. e eAaeEE R
.,
.

OBJECT
ORIENTATION—
THEORY AND
PRACTICE

How do I...
2.1 Understand the object-oriented paradigm?
2.2 Learn the concept of inheritance so that | can
apply it programmatically?
2.3 Learn the concept of encapsulation?
2.4 Learn the concept of polymorphism?

Object-oriented programming is a very powerful and important programming
paradigm. Object-oriented programs, when properly designed and
implemented, provide more flexibility to meet the demands for delivering
software in the rapidly changing marketplace. Everything from word processors,
to spreadsheets, to graphics applications, to operating systems are written in
object-oriented languages, the vast majority in C++.

CHAPTER 2

2.1

2.2

2.3

2.4

OBJECT ORIENTATION—THEORY AND PRACTICE

This chapter introduces you to the concepts of the object-oriented paradigm.
The target audience for this chapter is programmers working with procedural
languages who are interested in moving to C++. It is suggested that this chapter
be read before the chapter that follows. The chapter presents four How-Tos,
each designed to provide you with knowledge of basic object-oriented concepts.

This chapter takes a unique approach in the presentation of a How-To. This
chapter does not require the use of a special software tool. It does not require
the use of any compiler or programming language. You might want to have a
notepad or, if you prefer, a word processor. The focus for this chapter is
centered on thinking, but thinking in an object-oriented way. The intent is to
change your way of thinking about how a program is written. Object-oriented
programming is very different from procedural programming. To effectively use
an object-oriented language, you must make a paradigm shift.

Understand the Object-Oriented Paradigm

This How-To presents the common terminology used in object-oriented
programming. Brief definitions for the most common terms are given. The
How-Tos that follow will go into more detail about each of the terms and
concepts.

Learn the Concept of Inheritance So That | Can
Apply It Programmatically

Inheritance is one of three concepts that constitute the object-oriented
paradigm. Inheritance implies a parent/child relationship, just as happens in
nature. A pseudo programming language is defined in this How-To and is used
in the How-Tos that follow.

Learn the Concept of Encapsulation

Encapsulation encompasses the interface and abstraction of a class. An
encapsulated class is said to be cohesive or self-contained. Encapsulation
provides a clean separation of interface and implementation of a class.

Learn the Concept of Polymorphism

Polymorphism literally means many (poly) forms (morph). An object exhibits
polymorphic behavior based on its stance in an inheritance hierarchy. If two
(or more) objects have the same interface, but exhibit different behaviors, they
are said to be polymorphic. Polymorphism is a very powerful feature for an
object-oriented language. It allows the behavior of a member function to vary
depending on the type of the object.

2.1

UNDERSTAND THE OBJECT-ORIENTED PARADIGM

COMPLEXITY

2.1

BEGINNING
How do I...

Understand the object-oriented
paradigm?

Problem

I understand the structured programming paradigm and am eager to move into
object-oriented programming. | want to understand the object-oriented
paradigm, including terms and fundamental concepts.

Technique

This How-To presents some of the fundamental terms and principles used to
describe the concepts of object-oriented programming. Each term is defined in
the “Steps” section that follows. You can use this How-To as a reference for the
How-To sections that follow. Alternatively, use this How-To as a stepping stone
to the How-Tos that follow.

Steps

This section defines common terminology used in object-oriented technology.
You can think of this section as a reference, each step providing a definition for
some object-oriented term or concept. In each of the How-Tos that follows,
these terms will be described in more detail, building upon the basic definitions
given here.

« Attribute—The data for a class that maintains the current state of an
object. The state of an object is determined by the current contents of all
the attributes. Attributes should be hidden from users of the object.
Access to attributes should be defined through an object’s interface.

* Object—An object is a something that exists and is identifiable. An object
exhibits behavior, maintains state, and has traits. An object can be
manipulated. Some examples of objects are telephones, automaobiles,
buildings, animals, and computers. An object is an instance of a class.

* Class—Class is synonymous with type. A class specifies the traits (data)
and behavior that an object can exhibit. A class itself does not exist; it is
merely a description of an object. A blueprint for a building is analogous

EEE

CHAPTER 2

OBJECT ORIENTATION—THEORY AND PRACTICE

to a class and the building itself is the object. A class can be considered a
template for the creation of objects.

« Inheritance—This is the relationship of classes. There is an explicit is-a
relationship between classes. For example, an automobile is-a vehicle, a
zebra is-a mammal, a flower is-a plant, and so on. Classes with more
specialization inherit from classes with more generalization.

« Encapsulation—Encompasses the interface and abstraction of a class. An
encapsulated class is said to be cohesive or self-contained.

* Polymorphism—Literally means many (poly) forms (morph). An object
exhibits polymorphic behavior based on its stance in an inheritance
hierarchy. If two (or more) objects have the same interface, but exhibit
different behaviors, they are said to be polymorphic.

« Interface—The visible functionality of a class. The interface is the contract
an object makes with users of an object. An interface emphasizes a class's
abstraction. Users manipulate an object through its interface.

« Implementation—The internal functionality and attributes of a class. A
classs implementation is hidden from users of the class. Users should
manipulate an object through its interface without regard to the object’s
implementation.

« Abstraction—The generalization of a class that distinguishes it from other
classes. An abstraction emphasizes the interface of a class, providing a
clean separation of its implementation.

How It Works

Each of the object-oriented terms previously defined will be expanded on in the
How-Tos that follow.

Comments

This How-To provided brief definitions of commonly used terminology in
object-oriented programming.

i 57

LEARN ABOUT INHERITANCE AND APPLY IT PROGRAMMATICALLY

COMPLEXITY

BEGINNING

2.2 Howdol...
Learn the concept of inheritance
so that | can apply it
programmatically?

Problem

I've been learning to write basic C++ programs using a structured methodology
and am ready to learn the principles of object-oriented programming. | want to
be able to put these principles into practice using the C++ language. | have
heard that inheritance is one principle of object-oriented programming. How
can | understand the concept?

Technique

The principles of object-oriented programming can be learned with minimal
effort. The three basic concepts of object-orientation are inheritance,
encapsulation, and polymorphism. Understanding inheritance is a good starting
point because it is an easy concept to grasp.

The technique used to apply inheritance is straightforward. Think about
your family tree—that is inheritance. The procedure to describe your family
tree is the same to describe class inheritance in C++ (or any other object-
oriented language, for that matter).

Inheritance is known as an is-a relationship. A golden retriever is-a dog, a
snake is-a reptile, and a flower is-a plant. Each of these is a specialization of
its parent. For example, although a snake and a lizard are both reptiles, they are
very different from each other.

To begin applying inheritance, you must decide the base classes that must
exist within your application. Those base classes provide basic, default
functionality to users of the class. Users, in this context, relate to other objects
within your application that create and use instances of the classes you have
declared. An instance of a class is also referred to as an object; it is something
that “lives and breathes” within your program. An object exists and performs
operations upon itself and other collaborating objects. Think of it this way: A
blueprint for a building is analogous to a class. The building is the object. The
blueprint is just the static representation of the building. The building is the
dynamic, living object.

CHAPTER 2

OBJECT ORIENTATION—THEORY AND PRACTICE

The interface of a class is the part that the clients see. An interface is
considered a contract the class has with its clients. For example, an automobile
has an interface (contract) with its driver. An automobile’s interface includes a
steering wheel, gas and brake pedals, speedometer, and possibly a clutch and
stick shift. This interface provides functionality to you, the driver. Yet, you don't
have to know anything about the inner workings of the automobile—you just
put the key in, turn it, and drive off. The only functionality you have to worry
about is steering, braking, and resuming speed. To you, it does not matter if the
car has front-wheel or rear-wheel drive, or if the engine is a four- or eight-
cylinder; you just want the car to get you to your destination.

All objects you interact with have the concept of interface. Even the simplest
thing, such as a television or room light, has an interface. The television's
interface consists of buttons or dials and the interface of a room light is an
on/off switch. With the television, all you have to do is to push buttons or turn
dials; you do not have to understand electrical circuitry to operate it.

The first step to create a class is to identify the interface that the class must
present to its users. Let’s proceed through the process using a step-by-step guide
to develop a simple hierarchy.

First, for this chapter, | would like to stay away from implementing
object-oriented concepts using the C++ language. The next chapter will address
how to use the C++ language to implement the object-oriented concepts
learned in this chapter.

Second, no special software tool is required for this chapter. The only
requirement is that you learn to think in an object-oriented way. You might
want to use a text editor (or even longhand) to capture your class descriptions
and inheritance hierarchies.

Let’s create our own object-oriented declarative language. A simple language
is in order. The following is a glossary of our language:

« thing—The entity that is described. A thing is analogous to a class
(refer to How-To 2.1). A thing can have an interface that users can utilize.
A thing will have a name associated with it. A thing can be a superthing,
a subthing, or just a thing by itself. A thing will have parts and services,
both visible and hidden from users of the thing.

e descendant0of—A keyword that describes that some thing is a descendant
of some other thing. For example, you are a descendant0f your mother
and father.

* part—Used to describe the data to be used by a thing. A part is equivalent
to an attribute (refer to How-To 2.1). A thing must have data to represent
its current state.

2.2

LEARN ABOUT INHERITANCE AND APPLY IT PROGRAMMATICALLY

« service—An implementation for an operation of a thing. It is defined by
functionality provided by a thing to fulfill its interface (contract) to users.

* exposed—Available to the outside world (to client objects using this
object). Using a thing’s name, an object can access a thing’s part directly.

e internal—The opposite of exposed. Only the thing itself can access its
part element(s). A thing must provide a service so that client code can
either change or get the value of a thing’s part.

= inherit—This data is accessible by the thing directly and is inherited by its
descendants for access. For example, if child is a descendant of parent,
child will receive a copy of parent’s parts.

= superthing—A parent thing. Within a parent-child relationship, the parent
is the superthing.

« subthing—A child thing. Within a parent-child relationship, the child is
the subthing.

You now have a language that describes the entities a program needs to fulfill
its tasks. It is also helpful to have a notation to visually describe a class hier-
archy. The notation you will use is simple. A box will be used to represent a
thing. A line will be used to show the direction of inheritance. The thing (box)
pointed to is the parent thing. The thing at the other end of the line is the
child. I will also refer to the parent as the superthing and the child as the
subthing. Figure 2.1 demonstrates a parent-child relationship.

superthing L subthing
(parent) - (child)

Figure 2.1 The parent-child relationship.

For this How-To, let’s use a hierarchy for vehicles. You first have to decide
the base thing and then determine the other subthings that are descendants of
the base thing.

Steps

First, you have to give a name to the base thing. Notice that the name of
the thing is capitalized. You do it like this:

thing Vehicle

Then you have to describe the interface. This is a list of services that
clients can use:

EEE——

CHAPTER 2

OBJECT ORIENTATION—THEORY AND PRACTICE

thing Vehicle
exposed service powerSwitch
exposed service accelerate
exposed service decelerate

The next step is to extend the functionality of vehicle by declaring a
descendent of vehicle, say, MotorVehicle:

thing MotorVehicle descendantOf Vehicle

Next, you have to describe the interface that a Motorvehicle will provide
to users of this thing:
thing MotorVehicle descendantOf Vehicle
exposed service powerSwitch
exposed service accelerate

exposed service decelerate
exposed service steering

It is decided that you have to further specialize Motorvehicle by creating
a new thing named Truck:

thing Truck descendantOf MotorVehicle
exposed service fourWheelDrive

A The last step is to draw the inheritance using the notation defined, as
shown in Figure 2.2.

Vehicle MotorVehicle ¢ Truck
(superthing) (subthing) (subthing)

A

Figure 2.2 The inheritance diagram for Vehicle.

How It Works

You must first identify the base things that will make up your application. In
this How-To, you create a base thing named vehicle. The declaration looks
like this:

thing Vehicle
exposed service powerSwitch
exposed service accelerate
exposed service decelerate

Vehicle is a generic classification that can be extended through inheritance.
The interface (or services) that all vehicles must exhibit is powerSwitch,
accelerate, and decelerate. Think about it: All vehicles must start up
somehow; the powerswitch provides that functionality. The keyword exposed
designates that these services are accessible to users of a vehicle object. For
each thing that inherits from a Vehicle, you have to specify the functionality for

i T

LEARN ABOUT INHERITANCE AND APPLY IT PROGRAMMATICALLY

powerSwitch. For example, a powerswitch for an F-14 fighter aircraft will
operate differently than a powerswitch for a Motorvehicle. The intent is the
same, but the actual implementation of each is different.

A vehicle must also accelerate and decelerate. Notice that the terms
accelerate and decelerate are used instead of “gas pedal” and “brake.” Why? Not
all vehicles have a brake; a boat is a good example. Now that you have defined
what a basic vehicle must do, you will specialize, or inherit from, vehicle.

The thing vehicle is hardly useful considering its current definition, so the
next step is to define a new thing by inheriting from vehicle. This is specified
by the line

thing MotorVehicle descendantOf Vehicle

This definition is very straightforward. This statement declares that
MotorVehicle is a descendant (child) of vehicle (the parent). A Motorvehicle
is a specialization of a vehicle; the Motorvehicle will require a steering wheel,
brake pedal, and gas pedal (among other obvious things). You could continue
the definition of a Motorvehicle by specifying tires, an engine, a transmission,
and so on. The intent in this How-To is to explain the concept of inheritance
without making the things overly complicated. Notice that the names of things
are capitalized. In the case of Motorvehicle, each word of the compound word
is capitalized. This is accepted naming practice in object-oriented programming.

If some thing is a descendant of a Vehicle, it inherits the services defined in
Vehicle. You then extend the functionality of vehicle (otherwise, why inherit
from it?). If you don't need to specialize vehicle, simply create an instance of
Vehicle in your application.

Next, you have to inherit from Motorvehicle, namely a Truck. That is
reflected in the following declaration:

thing Truck descendantOf MotorVehicle
exposed service fourWheelDrive

A Truck inherits all the functionality of a Motorvehicle, specifically
powerSwitch, accelerate, decelerate, and steering. This Truck extends the
functionality of a Motorvehicle by providing four-wheel drive capability. This
is reflected in the declaration of a new service named fourWheelDrive.

Last, you draw the hierarchy to provide a visual representation of the inheri-
tance tree.

Comments

In step 1, you declared a vehicle thing to serve as a base thing. This base thing
functions as a template for all subsequent descendents of vehicle; you do not
intend to create objects of type vehicle. This is not always the case when
defining classes for an application. You might find that defining a lone thing

CHAPTER 2

OBJECT ORIENTATION—THEORY AND PRACTICE

suffices to represent some entity. Do not use inheritance just for the sake of
using inheritance. No requirement of the object-oriented paradigm states you
must always create an inheritance tree.

It is important to remember that you should only provide a minimal
interface for a thing. An overabundant interface is as bad a design as an
inadequate interface.

COMPLEXITY

BEGINNING
2.3 Howdoll...
Learn the concept of
encapsulation?
Problem
I want to extend my knowledge of object-oriented concepts. | am familiar with
inheritance and am ready to learn about encapsulation. | hear encapsulation is
an important principle of object-oriented programming and | want to take
advantage of its traits.
Technique
As with any programming concept (especially object orientation), the technique
required is quite easy. The technigue is to begin with something simple and
build upon that. You will continue the use of the definitive language outlined in
How-To 2.2.
In the following “Steps” section, you will use the vehicle thing from
How-To 2.2. Vehicles have various (physical) parts, so those parts will be
described by the parts keyword.
Steps

Declare parts for the vehicle thing. Those parts represent the state of an
object at some point in time.

thing Vehicle
exposed service powerSwitch
exposed service accelerate
exposed service decelerate
inherit part speed
inherit part isMoving
inherit part available

2.3

LEARN THE CONCEPT OF ENCAPSULATION

Now provide services for the vehicle, so users can obtain the values of

Vehicle parts

thing Vehicle
exposed service powerSwitch
exposed service accelerate
exposed service decelerate
inherit part speed
inherit part isMoving
inherit part available
exposed service getSpeed
exposed service isMoving
exposed service getAvailable

Now specify services for vehicle, so that users can change the values of

this vehicle parts.

thing Vehicle
exposed service powerSwitch
exposed service accelerate
exposed service decelerate
inherit part speed
inherit part isMoving
inherit part available
exposed service getSpeed
exposed service isMoving
exposed service getAvailable
exposed service setSpeed
exposed service setAvailable

How It Works

Encapsulation specifies the containment of functionality (services) and parts
within a thing. The concept specifies that you should hide parts within a thing.
Only the thing should know about its internal parts.

Another aspect of encapsulation is maintaining responsibility for a thing’s
parts and services. Each thing has a contract stating a responsibility to its
clients. A thing should be able to maintain its own existence—that is, to stand
on its own. A thing is considered cohesive if it can fully encapsulate itself.

You must remember to protect the internal state of your objects; if you don',

those objects will become unstable or corrupt. An unstable object is
untrustworthy; you can never count on the state of a corrupt object.

Comments
Inheritance and encapsulation are very important with respect to
object-oriented principles. However, they are but two important concepts. A
third concept, namely polymorphism, is addressed in the next How-To.

CHAPTER 2

OBJECT ORIENTATION—THEORY AND PRACTICE

COMPLEXITY

2.4 How do I.

BEGINNING

Learn the concept of
polymorphism?

Problem

I have a good understanding of inheritance and encapsulation and feel | have to
grasp the concept of polymorphism to round out my knowledge of
object-oriented technology.

Technique

Of the three object-oriented principles, polymorphism is probably the most
difficult to comprehend. Effective polymorphic behavior relies on proper
implementation of inheritance and encapsulation. The technique for ensuring
effective polymorphic behavior is to fully understand its intent and when
polymorphism should and should not be used.

Returning to the vehicle example from previous How-Tos, let's apply
polymorphism to the picture.

Steps

The declaration of Vehicle is reproduced here:
thing Vehicle

exposed
exposed
exposed
inherit
inherit
inherit
exposed
exposed
exposed
exposed
exposed

service
service
service

powerSwitch
accelerate
decelerate

part speed
part isMoving
part available

service
service
service
service
service

getSpeed
isMoving
getAvailable
setSpeed
setAvailable

Next, the declaration of Motor\Vehicle:
thing MotorVehicle descendantOf Vehicle

exposed
exposed
exposed
inherit
inherit

service
service
service

powerSwitch
accelerate
decelerate

part speed
part isMoving

2.4

LEARN THE CONCEPT OF POLYMORPHISM

inherit part available
exposed service getSpeed
exposed service isMoving
exposed service getAvailable
exposed service setSpeed
exposed service setAvailable
exposed service steering

The following is the declaration for Truck:

thing Truck descendantOf MotorVehicle
exposed service powerSwitch
exposed service accelerate
exposed service decelerate
inherit part speed
inherit part isMoving
inherit part available
exposed service getSpeed
exposed service isMoving
exposed service getAvailable
exposed service setSpeed
exposed service setAvailable
exposed service steering
exposed service fourWheelDrive

The following is a snippet of code using the pseudo-language:

Truck aTruck := create Truck.
aTruck->setSpeed(55) .

Vehicle baseVehicle := aTruck.

integer speed := baseVehicle->getSpeed.
Print(speed).

Print(aTruck->getSpeed).

MotorVehicle anotherVehicle := create MotorVehicle.
anotherVehicle->setSpeed(40).
baseVehicle := anotherVehicle.

Print (baseVehicle->getSpeed).
baseVehicle->setSpeed(85).
Print(anotherVehicle->getSpeed).

The output from this program is

55
55
40
85

How It Works

In the first three steps, the declarations for vehicle, Motorvehicle, and Truck
are reproduced from previous How-Tos. This is done merely for the
convenience of the reader.

CHAPTER 2

OBJECT ORIENTATION—THEORY AND PRACTICE

Although each derived thing inherits a service from its parent thing, you
expect that each derived thing will re-implement each service it inherits. This is
considered specialization. Each derived thing will specialize the functionality
defined by its parent thing. The following is an example to provide some

clarification:
thing RaceCar descendantOf MotorVehicle
1.
Considering the previous declaration of RacecCar, it can be assumed that the
service accelerate will function differently than the accelerate service for
Truck. | hope that a RaceCar object accelerates at a much faster rate than a
Truck object. Let's look at what is happening in step 4.
The first line of code
Truck aTruck := create Truck.

creates an instance of a Truck. The object (instance) will be known by the
declared name aTruck. Using the object, you can call upon the various services
defined for a Truck thing. The next line of code demonstrates this:

aTruck->setSpeed(55).

This call to setSpeed is made for the setSpeed service implemented by
the Truck thing. The implementation explicitly sets the value of the speed part
to 55.

The next line of code

Vehicle baseVehicle := aTruck.

creates an reference variable of type vehicle and is named basevehicle. This
is only a reference; basevehicle is not actually an object of type vehicle. The
assignment expression basevehicle := aTruck binds the reference
(basevehicle) to refer to the object aTruck. Although basevehicle is a
Vehicle reference, it is referring to a type Truck object. It is important to
understand this. Figure 2.3 expresses the relationship.

baseVehicle < aTruck(object)
speed = 55.
isMoving = true.
available = true.

Figure 2.3 Base reference relationship to derived object.

2.4

LEARN THE CONCEPT OF POLYMORPHISM

The line of code that follows

integer speed := baseVehicle->getSpeed.

creates a program variable of type integer; the service getSpeed is called using
the reference basevehicle. Which getSpeed is called: the one implemented in
Vehicle, the one defined in Motorvehicle, or the one implemented in Truck?
The getSpeed called is the one implemented in Truck. This is the expected
behavior, considering the definition of polymorphism. The service called
depends on the actual object referred to, not the reference to the object.
Because basevehicle actually refers to a Truck object, it is Truck->getSpeed
that is called. The next two lines of code verify that fact by printing the value of
aTruck->speed. First, the value stored in the local variable speed is printed.
Next, the value stored in aTruck->speed is printed. The next two lines of code
in the program fragment

MotorVehicle anotherVehicle := create MotorVehicle.
anotherVehicle->setSpeed(40).

create an object named anothervehicle Of type Motorvehicle. The second line
then sets the speed part of this object to 4@. The line of code that follows

baseVehicle := anotherVehicle.

sets the reference basevehicle to refer to the object anothervehicle.
The last three lines of code from the program follow:

Print(baseVehicle->getSpeed).
baseVehicle->setSpeed(85).
Print(anotherVehicle->getSpeed).

The first line prints the contents of anothervehicle->speed, which is 40.
The next line sets the contents of anothervehicle->speed to 85 through the
reference basevehicle. Finally, the value of anothervehicle->speed, which is
now 85, is printed out, thus verifying the call to setSpeed through
baseVehicle.

Comments

This How-To provided a definition for polymorphism and demonstrated its
mechanism using a sample program. In the next chapter, polymorphism is
demonstrated using the C++ programming language.

The descriptions and definitions in this chapter are a good introduction to
thinking in “object mode” rather than structure mode.

_ CHAPTER 3
OBJECT

ORIENTATION—C++

OBJECT
ORIENTATION—C++
SPECIFICS

How do I...
3.1 Create a simple class in C++?
3.2 Implement the use of inheritance in C++?
3.3 Apply the use of encapsulation in a C++ program?
3.4 Implement polymorphism in C++?
3.5 Implement static members of a class?

In this chapter, you will explore the world of object-oriented programming
using the C++ language. In Chapter 1,“A Quick Introduction to the Language,”
the fundamentals of the language are introduced. In Chapter 2, “Object
Orientation—Theory and Practice,” the three basic concepts of object-oriented
programming are introduced: inheritance, encapsulation, and polymorphism.

The first four How-Tos in this chapter will mirror the first four How-Tos in
Chapter 2. This will provide you with a basic understanding of implementing
inheritance, encapsulation, and polymorphism. The last How-To demonstrates
the use of static members of a class.

CHAPTER 3

3.1

3.2

3.3

3.4

3.5

OBJECT ORIENTATION—C++ SPECIFICS

Create a Simple Class in C++

This How-To shows how to create a user-defined type, known specifically as a
class. You will also learn how to separate the declaration and definition of a
class.

Implement the Use of Inheritance in C++

This How-To explores the concept of inheritance by providing a concrete
example. Inheritance is a powerful concept and is easily implemented in the
C++ language. The example given in the How-To will guide you through the
process of creating an inheritance hierarchy.

Apply the Use of Encapsulation in a C++ Program
Encapsulation is one of three basic concepts of object-oriented programming.
Encapsulation is the grouping of a class interface and its implementation, and
providing a clean separation of the two. This How-To will introduce the
concept, providing an example to illustrate the concept.

Implement Polymorphism in C++

Inheritance and encapsulation are two (of three) important features of
object-oriented programming. The third important feature, polymorphism, is
demonstrated in this How-To.

Implement Static Members of a Class

The use of static data members and static member functions can be useful in
certain programming situations. The decision to use this feature should be dealt
with during the design of your classes. In this How-To, you will see how to
exploit the use of static members of a class.

COMPLEXITY

3.1

BEGINNING
How do I...

Create a simple class in C++7?

Problem

I have a good understanding of the C++ language in general, and am ready to
explore the use its object-oriented features. | understand that the class is the
basic building block for implementing all the concepts of object-oriented
programming in C++. Is there some class | can define that will demonstrate the
basic organization of a class?

3.1

CREATE A SIMPLE CLASS IN C++

Technique

Every class in C++ implies the use of object-oriented functionality. You should
follow some basic rules when defining your classes. This How-To demonstrates
those rules by creating a class and showing how to create an object of that class
at runtime. This technique will demonstrate the principles of class declaration
and definition.

This How-To will also show how to separate a class declaration from its
implementation by using separate files. You will use a header file to contain the
class declaration and define the functionality of the class in an implementation
file.

Steps

Change to your base source directory and create a new subdirectory
named VEHICLE.

Fire up your source code editor and type the following code into a file
named VEHICLE.H:
// vehicle.h - this file contains a class

// declaration for the vehicle type.
class Vehicle

{
public:
enum Switch { SWITCH_ON, SWITCH_OFF } ;
Vehicle() ;
~Vehicle() ;
bool powerSwitch(Switch onOroff) ;
unsigned int accelerate(unsigned int amount) ;
unsigned int decelerate(unsigned int amount) ;
bool isMoving(void) const ;
unsigned int getSpeed(void) const ;
unsigned int setSpeed(unsigned int speedIn) ;
protected:
bool moving ;
private:
unsigned int speed ;
Y

Please note that if your compiler does not support the bool data type,
you can add the following line of code at the top of this header file:

enum bool { false = @, true } ;

Create a new file named VEHICLE.CPP and type the following code into
that file:

// declaration of Vehicle
#include "vehicle.h"

CHAPTER 3

OBJECT ORIENTATION—C++ SPECIFICS

Vehicle::Vehicle()
speed(@), moving(false)

{
}
Vehicle::~Vehicle()
{
speed = 0;
moving = false ;
}

bool Vehicle::powerSwitch(Switch onOrOff)
{

bool on = false ;

if(onOrOff == SWITCH_OFF)

{
speed = 0 ;
moving = false ;

}

return(on) ;

}

unsigned int Vehicle::accelerate(unsigned int amount)

{
speed += amount ;
moving = true ;

return(speed) ;

}

unsigned int Vehicle::decelerate(unsigned int amount)

{

if(amount > speed)

speed = 0 ;
else
speed -= amount ;
moving = (speed == @) ? false : true ;

return(speed) ;

}
bool Vehicle::isMoving() const
{
return(moving) ;
}

unsigned int Vehicle::getSpeed() const

{
return(speed) ;

}

3.1

CREATE A SIMPLE CLASS IN C++

unsigned int Vehicle::setSpeed(unsigned int speedIn)

{
speed = speedIn ;
moving = true ;

return(speed) ;

}

Save this file and create a new file named MAIN.cPP. This file should
contain the following:

#include <iostream>
#include "vehicle.h"

int main()
{

Vehicle vehicle ;
Vehicle *pv = new Vehicle() ;

vehicle.setSpeed(10) ;
pv->setSpeed(20) ;

cout << "vehicle's speed: " << vehicle.getSpeed() << endl ;
cout << "pv's speed ;" << pv->getSpeed() << endl ;

delete pv ;

return 0 ;

}

Save MAIN.CPP and return to the command line. Next, compile and link
MAIN.CPP and VEHICLE.CPP as in the following example:

gcc -c main.cpp vehicle.cpp
If your compiler complains about the statement

#include <iostream>

comment out (or remove) the using directive following it and change the
#include line to

#include <iostream.h>

Run the program; the output should be as follows:

vehicle's speed: 10
pv's speed 120

If you are using the DJGPP compiler, you might have to rename the
executable from A.0UT to MAIN.EXE to execute the program.

CHAPTER 3

OBJECT ORIENTATION—C++ SPECIFICS

How It Works

Let’s begin by examining the header file VEHICLE.H. A class declaration in C++
begins with the keyword c1ass, followed by an opening brace, one or more
declarations, and ends with a closing brace and semicolon. Declaring a class is
declaring a new type (user-defined type), just as an int or double. A class
bundles together data and functionality into a self-contained package.

The first source line within the class declaration is the access specifier
public. The three access specifiers available are public, protected, and
private. A class member that has private visibility can only be accessed by
member functions of the class and friends of the class. A How-To in this
chapter discusses the friend keyword and its use. Any class member declared
with protected visibility is accessible by the member functions of the class and
the class’s descendents. Any member of a class with public visibility is
accessible outside of the class. The default access for a class is private. You can
also declare a user-defined type using the struct (versus class) keyword. The
only difference between struct and class is that the default access for struct
IS public.

The next declaration within the class:

enum Switch { SWITCH_ON, SWITCH_OFF } ;

Vehicle() ;

defines an enumeration type and offers two values for the vehicle class. This
trick permits you to define constants that are only visible to the class; the
definitions are not accessible outside the class. The advantage is that the global
namespace is not polluted with excess constants.

The next line

is a declaration of a constructor for the class. The constructor is a special
member function that is used to initialize an instance of a class. Whenever an
object is created at runtime, the appropriate constructor for the class will be
called to initialize the object. Notice | use the word appropriate because
constructors can be overloaded. Operators, such as =, can also be overloaded
for a class. To overload a member function is to use the same name for multiple
versions of the function; each overloaded function must differ by its argument
signature. For example, the following class declaration specifies three different
constructors for a user-defined Date class:

class Date {

Date() ;

Date(int year) ;

Date(int year, int month) ;

Date(int year, int month, int day) ;

/...

3.1

CREATE A SIMPLE CLASS IN C++

At the point of instantiation, you could call one of the constructors as
appropriate. The following instantiation creates an object of type Date
specifying the year and month:

Date today(1999, 1) ;

The next declaration

~Vehicle() ;

is the destructor for the class. The destructor is the compliment to the
constructor; it is called when an object is destroyed. The name of the destructor
is the name of the class with a tilde ~ character prepended to the name. A
constructor and destructor for a class should be declared with public access. A
constructor or destructor can be declared with protected or private access;
demonstrating this and the reasons why you would do it are beyond the scope
of this How-To.

The next six declarations

bool powerSwitch(Switch onOroff) ;

unsigned int accelerate(unsigned int amount) ;
unsigned int decelerate(unsigned int amount) ;
bool isMoving(void) const ;

unsigned int getSpeed(void) const ;

unsigned int setSpeed(unsigned int speedIn) ;

declare member functions for the class. A member function has scope within
the declaring class. This means that a member function cannot be accessed
outside of the context of a class instance. The dot or arrow member access
operator is used to access a member of a class. This will be demonstrated later
in this How-To.

The member functions of a class that have public visibility define the
interface of the class. The interface of a class is the contract that a class makes
with users of the class. The users of a class alter and retrieve an instance state
through the interface. Users of a class should never have access to a class’s data
members. Each one of the member functions of vehicle is used by users to get
or set the instance data. For example, the declaration

unsigned int getSpeed(void) const ;

returns the speed of the vehicle instance. Notice that the function is declared
with the const modifier. This modifier states that this function will not modify
any data member of the class. This makes sense because this function simply
returns the value of the speed data member. This type of member function is
normally referred to as an accessor. A mutator function is used to alter one or
more data members of a class. For example, the member function

unsigned int setSpeed(unsigned int speedIn) ;

modifies the speed data member.

4“ CHAPTER 3
OBJECT ORIENTATION—C++ SPECIFICS

Just after the member function declarations, you find the following two lines
of code:

protected:
bool moving ;

Again, any members declared after this access specifier are hidden from users
of the class. Only member functions of the class and derived classes can access
the members declared with protected visibility.

Examine the next two lines of code:

private:
unsigned int speed ;

Again, any members declared after this access specifier are hidden from users
of the class. Only member functions of the class can access any members
declared with private visibility.

Next, examine the implementation for class vehicle. The implementation is
found within VEHICLE.CPP. The first member function definition is that of the
classs constructor. The definition begins with the name of the class, followed by
the scope resolution operator, the constructor's name (again, the name of the
class), and any arguments that might be declared. The definition of the
constructor for the vehicle class follows:

Vehicle::Vehicle() :
speed(@), moving(false)

{1}

The member initializer list follows the colon operator and precedes the
constructor’s opening brace. The initializer list can only be used with
constructors and is the preferred method of initializing class data members.
Notice that you do not use the assignment operator to assign a value to a data
member; only constructor notation is allowed within the initializer list. Any
number of program statements can appear within the constructor’s body; in this
example, no further functionality is required.

The next function definition in the implementation file is that of the
destructor. Remember that the destructor is called for any instance of a class
that is about to be destroyed. Within the body of a destructor is any logic
required to properly de-initialize an instance of a class. For example, if your
class allocates memory within the constructor, you should deallocate the
memory in the destructor. The rule of thumb is to release any resources used by
the class within the destructor. If an instance of a class is dynamically allocated
and subsequently deallocated with delete, the destructor of the object is first
called, and then the memory for the object is reclaimed.

3.1

CREATE A SIMPLE CLASS IN C++

The definition of powerswitch follows the definition of the destructor.
Notice that, besides constructors and destructors, the name of a member
function is preceded by the name of the class and the scope resolution operator.
Be sure that the return type is specified along with any arguments to the
member function.

After the definition for powerswitch are definitions for the functions
accelerate, decelerate, isMoving, getSpeed, and setSpeed. A brief descrip-
tion of each function follows.

The member functions accelerate and decelerate are used to increase and
decrease the speed of a vehicle instance, respectively. The isMoving member
function merely returns the value contained in the instance variable moving.
The getSpeed member function does the same for the variable speed. Users of
the class utilize the setSpeed member function to change the value of the
variable speed.

Let’s turn our attention to the third source file: MAIN.cPP. This file contains
the function main. The first two statements within main's body follow:

Vehicle vehicle ;
Vehicle *pv = new Vehicle() ;

The first statement instantiates an object of type vehicle on the stack. The
second statement uses the new expression to create a Vehicle object from the
free store. The result of the allocation is a pointer of type Vehicle; this pointer
points to the newly created object. There is a fundamental difference between
the two. The lifetime of the object vehicle will expire when it leaves the block
from which it is created. The object created with the new expression continues
to exist until delete is called for the pointer to the object.

The next two statements

vehicle.setSpeed(10) ;

pv->setSpeed(20) ;
are a call to the setspeed member function for each object. The first method
uses the member dot operator and the second uses the arrow member access
operator. The dot operator is used to access a member of a class instantiated on
the stack. The arrow member access operator is used to access a member of a
class (through a pointer) that is dynamically allocated.

The two source statements that follow:

cout << "vehicle's speed: " << vehicle.getSpeed() << endl ;
cout << "pv's speed i " << pv->getSpeed() << endl ;

simply print out the value of the speed instance variable for each object. The
value is returned by the member function getSpeed.

CHAPTER 3

OBJECT ORIENTATION—C++ SPECIFICS

The next-to-last statement in main is

delete pv ;

and is called to delete the dynamically allocated object that is pointed to by pv.
Remember that if delete is called for a dynamically created object, the
destructor is called first, and then the memory for the object is reclaimed.

It is not explicitly shown, but the vehicle object will be destroyed at the
end of the main function; the sequence of events will result in a call being made
to the destructor. Following that, the object will be destroyed.

Comments

Although this class is not very interesting with respect to functionality, the class
does serve to demonstrate the basics of a C++ user-defined type.

A user-defined declaration begins with the keyword class (or struct),
followed by a name for the class and an opening and closing brace, and ends
with a semicolon. Declarations within the class body default to private access
for class declarations and public for struct declarations. Any members
declared with protected access are directly accessible to members of derived
classes, yet are inaccessible to users of the class.

Place your data members in the private section and provide accessor and
mutator member functions so clients of the class can access those data
members. Be cautious because some data members should be completely
shielded from client access. Only provide accessors and mutators where
absolutely required.

Remember that you should place your class declaration in a header file and
the implementation in a separate file, normally with a .cpp extension. Common
practice is to put each class declaration in its own header file and each class
definition in its own .cpp file.

COMPLEXITY

3.2

INTERMEDIATE
How do I...

Implement the use of inheritance
in C++7?

Problem

I know how to declare and implement a class in C++ and am now ready to
implement a class hierarchy using inheritance. Is there a simple example that
will demonstrate inheritance in C++?

3.2

IMPLEMENT THE USE OF INHERITANCE IN C++

Technique

Declaring and implementing user-defined types (classes) is a powerful feature of
C++. This power is extended using class inheritance. Many abstractions are best
represented in an inheritance hierarchy. For example, circles, squares, and
polygons are all shapes. This suggests the use of a base class (possibly) hamed
Shape. This base class will declare functionality and attributes that is common
to all shapes. Then each specific type, such as Square, will derive from shape
and modify or extend the functionality for its specific purpose.

In this How-To, you will create an application that uses inheritance. You will
be using the vehicle class from the previous How-To as a base class. You will
create a new class that derives basic functionality from vehicle.

Steps
Create a new subdirectory named CAR, change to that subdirectory, and
start your source code editor.

Copy the files named VEHICLE.H and VEHICLE.CPP from the VEHICLE
subdirectory (used in the last How-To). The file VEHICLE.H follows:

// vehicle.h - this file contains a class
// declaration for the vehicle type.

class Vehicle

{
public:
enum Switch { SWITCH_ON, SWITCH_OFF } ;
Vehicle() ;
~Vehicle() ;
bool powerSwitch(Switch onOroff) ;
unsigned int accelerate(unsigned int amount) ;
unsigned int decelerate(unsigned int amount) ;
bool isMoving(void) const ;
unsigned int getSpeed(void) const ;
unsigned int setSpeed(unsigned int speedIn) ;
protected:
bool moving ;
private:
unsigned int speed ;
Y

Please note that if your compiler does not support the bool data type,
you can add the following line of code at the top of this header file:

enum bool { false = 0, true } ;

CHAPTER 3

OBJECT ORIENTATION—C++ SPECIFICS

Create a new file called cAR.H and type the following class declaration:

// car.h - this file contains a class declaration
// for the Car type, derived from Vehicle
#include "vehicle.h"

class Car : public Vehicle

{

public:
enum { MAX_SPEED = 80 } ;
Car() ;
~Car() ;

unsigned int setSpeed(unsigned int speedIn) ;
void steer(int degrees) ;
void headLights(Switch onOrOff) ;
private:
int degrees ;
Switch drivinglLights ;
Y

Create a file named CcAR.cpPP and type the following code:

// car.cpp implementation file
// for a Car; derived from Vehicle
#include "car.h"

Car::Car() : Vehicle(),
degrees(@), drivingLights(SWITCH_OFF)

{
}
Car::~Car()
{
degrees = 0 ;
drivingLights = SWITCH_OFF ;
}

unsigned int Car::setSpeed(unsigned int speedIn)

{
if(speedIn > MAX_SPEED)
speedIn = MAX_SPEED ;

Vehicle::setSpeed(speedIn) ;
moving = true ;

return(Vehicle::getSpeed()) ;
}

void Car::steer(int degrees)

{

if(moving)

3.2

IMPLEMENT THE USE OF INHERITANCE IN C++

{
if(degrees == 0)
this->degrees = 0 ;
else
this->degrees += degrees ;
}
}
void Car::headLights(Switch onOrOff)
{
drivingLights = onOrOff ;
}

Save CAR.CPP and create a file named MAIN.cPP. This file should contain
the following:
#include <iostream>

using namespace std ;
#include "car.h"

int main()

{

Car *sporty new Car() ;
Car *luxury = new Car() ;

sporty->setSpeed(120) ;
luxury->setSpeed(35) ;

luxury->steer(20) ; // turn to right

luxury->headLights(Vehicle::SWITCH_ON) ;
luxury->accelerate(15) ;

cout << "sporty's speed : " << sporty->getSpeed() << endl ;
cout << "pLuxury's speed: " << luxury->getSpeed() << endl ;

if(sporty->isMoving())

cout << "sporty is moving" << endl ;
else

cout << "sporty isn't moving" << endl ;

delete luxury ;
delete sporty ;

return 0 ;

}

A Save maIn.cpp and return to the command line. Next, compile and link
MAIN.CPP, VEHICLE.CPP, and CAR.CPP as shown in the following:

gcc -c main.cpp vehicle.cpp car.cpp

If your compiler complains about the statement

#include <iostream>

m CHAPTER 3
OBJECT ORIENTATION—C++ SPECIFICS

comment out (or remove) the using directive following it and change the
#include line to

#include <iostream.h>

Run the program; the output should be as follows:

sporty's speed : 80
pLuxury's speed: 50
sporty is moving

If you are using the DJGPP compiler, you might have to rename the
executable from A.OUT to MAIN.EXE to execute the program.

How It Works

Let’s start by examining the file CAR.H. In this file, you find the declaration of
the user-defined type car. After the #include directive, you come to the
declaration for car, as shown following:

class Car : public Vehicle

The keyword class introduces a user-defined type, followed by the name.
Next is the colon operator, followed by the public keyword and a class name.
The colon operator introduces one or more base classes from which this class
derives. The derived class is car and the base class is vehicle. This is known as
an is-a relationship; in other words, car is-a Vehicle. This is the same as any
other inheritance relationship you find in the world around you. A dog is-a
mammal. A house is-a building, and so on. So, car inherits from vehicle.

Next you find the public access specifier, followed by a class scope constant
named MAX_SPEED. Then come the constructor, destructor, and three member
functions.

The first member function, setSpeed, is also found in the base class
Vehicle. The member function setSpeed is overridden in car because the
signatures in vehicle and car match exactly. In other words, the function in
car is redefined because car specializes the functionality.

The next function declaration

void steer(int degrees) ;

is a new member function introduced for car. Obviously, you have to steer a
car, so this member function provides that functionality. You are probably
asking, “All vehicles must be steerable, so why not provide that function in
Vehicle?” Think about a train. The engineer does not actually steer the train
because the act of steering a train is controlled by the train tracks. When
deciding on your abstractions, you have to think about minimal functionality in

oF EEE——
IMPLEMENT THE USE OF INHERITANCE IN C++

the base class. This style of thinking will remove any restrictions that might be
passed on to derived classes. For example, if you had declared the function
steer in the base class, and decided to create a derived train class, you would
end up with an invalid interface. A client developer will take a look at the
available interface and wonder what the steer function will provide for a train.

Next, you find the declaration
void headLights(Switch onOroff) ;

This member function is required so that the headlights for a car object can
turn on and off. This also provides additional functionality not provided by the
base class vehicle.

Following the declaration for headlight, you come upon the access specifier
private. Within the private section, you find two attributes declared: degrees
and drivingLights. The attribute degrees is used to hold the amount of
degrees that the steering wheel is moved and the drivingLights attribute is
used to hold the state of an object’s headlights. Access to these attributes is
controlled by the two member functions previously discussed.

Lets now look at the implementation file for car. The first definition, the
constructor, is as follows:

Car::Car() : Vehicle(),
degrees(@), drivingLights(SWITCH_OFF)
{1}

After the colon operator, you find a constructor call to the base class
vehicle within the initializer list. Whenever a derived class object is
instantiated at runtime, the base class object is first constructed. Here, you are
explicitly calling the base class constructor. After the constructor call, a
comma-separated list of class data members is initialized. No additional
functionality of the class is required, so the constructor’s body is empty.

Following the definition of the constructor, you come upon the function
definition for setSpeed. Remember that this definition overrides the definition
found in vehicle. The reason you override the member function is that you
have to control the upper limit of the object’s speed. Take a look at the
following two statements within this member function:

Vehicle::setSpeed(speedIn) ;
moving = true ;

In the member function, you first include some logic to verify the object’s
speed. Next comes the call to the member function setSpeed found in the base
class; this is done by specifying the name of the base class followed by the
scope resolution operator. This call will set the speed attribute found in
Vehicle. How about the assignment to the moving variable, you ask? No

CHAPTER 3

OBJECT ORIENTATION—C++ SPECIFICS

attribute named moving is in the declaration of car. It turns out that this data
member is declared in the base class vehicle. Because you have inherited this
data member and it has protected visibility, the member functions of this
derived class can access the variable directly. Also notice the return statement;
a call is made to vehicle’s getspeed member function. This call must happen
because the speed data member is inaccessible to car.

Next, you find the definitions for the member functions car: :steer and
Car::headLights. These two functions provide an implementation to steer the
object and turn the driving lights on and off.

Now examine the file named MAIN.cPP. This file contains the main function
for the program. The first two statement within main follow:

Car *sporty = new Car() ;

Car *luxury

sporty -
luxury -

luxury -
luxury -
luxury -

new Car() ;

Each of these statements dynamically creates an object of type car using the
new expression.

The next two lines of code

>setSpeed(120) ;
>setSpeed(35) ;

call the member function setSpeed for each object. Remember that you
provided functionality to limit the speed of an object; in a moment, you will see
if this functionality works properly.

The following three lines

>steer(20) ; // turn to right
>headlLights(Vehicle::SWITCH_ON) ;
>accelerate(15) ;

alter the state of the object 1uxury. The first statement steers the object to the
right 20 degrees. The next statement turns the headlights on for the object.
Note that you cannot use the constant SWITCH_ON directly; the class name and
scope resolution operator must be used to access the value.

The next two statements use cout to print the speed of each vehicle. The
output from sporty confirms the logic of the setSpeed member function. The
best you can do is 80, even though you really want to go 120.

Next, you find an if-else statement pair, checking to see if the sporty
object is moving. A call is made to the member function isMoving, yet this
member function is not declared or defined in car. This member function is
found in the base class; because this member function is not overridden in car,
a call is made to the base class function.

Finally, the two delete expressions in the main function destroy the two car
objects.

5 .

APPLY THE USE OF ENCAPSULATION IN A C++ PROGRAM

Comments

You have seen a concrete example of inheritance in this How-To. The amount of
code required to implement a car has been minimized because the base class
provides some default functionality. You did not have to reapply the function-
ality found in vehicle to the car class. This is the power of inheritance.

Object-oriented programming dictates more forethought concerning program
design. You must think of the problem domain and flush out the abstractions.
The first task is always to identify the classes that must support the application.
Do you find that some classes exhibit common functionality between them? If
s0, you should abstract that common functionality into a base class and then
inherit for specialization.

COMPLEXITY

INTERMEDIATE

3.3 Howdo I...
Apply the use of encapsulation in
a C++ program?
Problem
I have read the term encapsulation and understand its meaning to some degree. |
would like to see how this concept is implemented in C++.
Technique

You will examine the practice of encapsulation in this How-To. There are no
hard-and-fast rules for encapsulation. This is the responsibility of the class
designer. Ask six different class architects to provide a class declaration for a
radio and you will get six different class declarations!

Encapsulation involves the collection of a class’s interface, its data members,
and its implementation. A class that is properly encapsulated is said to be
cohesive, or self-sufficient. The term data hiding is sometimes used as a
synonym for encapsulation. The two terms are not the same, yet data hiding is
an aggregate of encapsulation. Data hiding is one of the goals of encapsulation;
it is the shielding of data from users of a class.

You will make use of the vehicle class declared in How-To 3.1. If you did
the example in How-To 3.1, change to the VEHICLE subdirectory and skip to
step 3 in the “Steps” section that follows; otherwise, proceed to the “How It
Works” section that follows.

CHAPTER 3

Steps

OBJECT ORIENTATION—C++ SPECIFICS

If you did not do How-To 3.1, change to your base source directory and
create a new subdirectory named VEHICLE. Start your source editor and
type the following code into a file named VEHICLE. H:

// vehicle.h - this file contains a class

// declaration for the vehicle type.
class Vehicle

{
public:
enum Switch { SWITCH_ON, SWITCH_OFF } ;
Vehicle() ;
~Vehicle() ;
bool powerSwitch(Switch onOroff) ;
unsigned int accelerate(unsigned int amount) ;
unsigned int decelerate(unsigned int amount) ;
bool isMoving(void) const ;
unsigned int getSpeed(void) const ;
unsigned int setSpeed(unsigned int speedIn) ;
protected:
bool moving ;
private:
unsigned int speed ;
Y

Please note that if your compiler does not support the bool data type,
you can add the following line of code at the top of this header file:

enum bool { false = 0, true } ;

If you did not do How-To 3.1, create a new file named VEHICLE.CPP and
type the following code into that file:

// declaration of Vehicle
#include "vehicle.h"

Vehicle::Vehicle()
speed(@), moving(false)

{
}
Vehicle::~Vehicle()
{
speed = 0;
moving = false ;
}

bool Vehicle::powerSwitch(Switch onOrOff)
{

bool on = false ;

5 EN
APPLY THE USE OF ENCAPSULATION IN A C++ PROGRAM

if(onOrOff == SWITCH_OFF)

{
speed = 0 ;
moving = false ;
}
return(on) ;
}
unsigned int Vehicle::accelerate(unsigned int amount)
{
speed += amount ;
moving = true ;
return(speed) ;
}
unsigned int Vehicle::decelerate(unsigned int amount)
{
if(amount > speed)
speed = 0 ;
else
speed -= amount ;
moving = (speed == @) ? false : true ;
return(speed) ;
}
bool Vehicle::isMoving() const
{
return(moving) ;
}
unsigned int Vehicle::getSpeed() const
{
return(speed) ;
}
unsigned int Vehicle::setSpeed(unsigned int speedIn)
{
speed = speedIn ;
moving = true ;
return(speed) ;
}

How It Works

There are two views of a class. One view is the public interface and the second
is the private implementation. The interface is the contract that a class makes
available to users of the class. It is the means by which a user of a class controls

CHAPTER 3

OBJECT ORIENTATION—C++ SPECIFICS

the state of an object. The implementation of a class is of no concern to users of
a class. How an object actually alters its state should be shielded from the users
of an object. There should be a clean separation of interface and
implementation. This allows you to change the implementation without
disturbing the interface to the users of the class.

The interface of the vehicle class includes a constructor, destructor, and six
member functions. Users of the class can only change the state of an instance of
Vehicle through these six member functions. The user can not access the
protected and private class members.

Each member function provides program logic to maintain the integrity of
each instance of the class. This is the cornerstone of implementation—to
maintain the integrity and state of each class instance. If the data members are
exposed to users of the class, any instance of a class is in jeopardy. Moreover, if
an instance of a class is in jeopardy, your application is in jeopardy.

The member functions accelerate, decelerate, and setSpeed are used by
clients of the class to alter the state of the speed attribute. The implementation
of each of these member functions should provide checks to ensure that the
speed attribute is not corrupted or assigned a meaningless value. One safeguard
is that the attribute is declared as an unsigned int. You have to ask yourself:
“Does it make sense to have a speed of —23?” The powerSwitch member
function is provided so that users of the class can start up or turn off an object.
These member functions are commonly referred to as mutator functions
because they alter the internal state of an object.

The remaining member functions, isMoving and getSpeed, are known as
accessor member functions. These functions are provided so that users of the
class can examine specified attributes of a class. You should only provide
accessor functions that make sense as it might not be desirable for clients to
examine every instance variable of a class. You should only return a copy of the
instance variable; never return a pointer or reference to an internal variable.
Otherwise, why make it private? If you return a pointer (or reference) to an
internal variable, users of the class can manipulate the attribute directly. You
might want to refer to How-To 1.5 concerning pointers.

As you can expect, the attributes of the class are hidden within the
protected and private sections of the class declaration. The moving data
member has protected visibility; this allows the class declaring it and any
derived classes to access the object directly. Users of the class cannot access the
data member directly; users can only access the variable through the class’s
interface, if so provided. The data member speed is declared with private
visibility.

Although the vehicle class does not demonstrate it, member functions can
also be declared with protected or private visibility. Your classes might
require member functions that implement internal functionality to support the

3.4

IMPLEMENT POLYMORPHISM IN C++

classs interface. For example, you might have a private member function
named meterGasoline Or adjustAirMeter to support the public member
function accelerate

COMPLEXITY

INTERMEDIATE

3.4 Howdo l...
Implement polymorphism in C++?

Problem

I am familiar with the term polymorphism and understand its concept. | have
not implemented this feature in C++ and would like to know how.

Technique

This How-To demonstrates polymorphism by providing a simple program.
Polymorphism is a powerful feature that is synonymous with dynamic function
binding. Polymorphism is derived from Latin and means “many (poly) forms
(morph).” It is a facility whereby a member function having the same signature
in a hierarchy of classes, each having a different implementation, is dynamically
bound (called) at runtime based on the type of the object.

Steps

Create a new subdirectory named PCAR and change to that subdirectory.
Copy the files named VEHICLE.H and VEHICLE.CPP from the VEHICLE
subdirectory (used in How-To 3.2).

Open up the header file VEHICLE .H in your editor and add the virtual
keyword as shown in the following (the changes are bolded):

// vehicle.h - this file contains a class
// declaration for the vehicle type.

class Vehicle

{

public:
enum Switch { SWITCH_ON, SWITCH_OFF } ;
Vehicle() ;

virtual ~Vehicle() ;

virtual bool powerSwitch(Switch onOroOff) ;
virtual unsigned int accelerate(unsigned int amount) ;
virtual unsigned int decelerate(unsigned int amount) ;

3
virtual bool isMoving(void) const ;

CHAPTER 3

OBJECT ORIENTATION—C++ SPECIFICS

virtual unsigned int getSpeed(void) const ;

virtual unsigned int setSpeed(unsigned int speedIn) ;
protected:

bool moving ;
private:

unsigned int speed ;

Y

Please note that if your compiler does not support the bool data type,
you can add the following line of code at the top of this header file:

enum bool { false = 0, true } ;

Create a new file called cAR.H and type the following class declaration:

// car.h - this file contains a class declaration
// for the Car type, derived from Vehicle
#include "vehicle.h"

class Car : public Vehicle

{

public:
enum { MAX_SPEED = 80 } ;
Car() ;
~Car() ;

unsigned int setSpeed(unsigned int speedIn) ;
virtual void steer(int degrees) ;
virtual void headLights(Switch onOrOff) ;
private:
int degrees ;
Switch drivinglLights ;
Y

Create a file named CcAR.cpPpP and type the following code:

// car.cpp implementation file
// for a Car; derived from Vehicle
#include "car.h"

Car::Car() : Vehicle(),
degrees(@), drivingLights(SWITCH_OFF)

{
}
Car::~Car()
{
degrees = 0 ;
drivingLights = SWITCH_OFF ;
}

unsigned int Car::setSpeed(unsigned int speedIn)
{
if(speedIn > MAX_SPEED)
speedIn = MAX_SPEED ;

3.4

IMPLEMENT POLYMORPHISM IN C++

Vehicle::setSpeed(speedIn) ;
moving = true ;

return(Vehicle::getSpeed()) ;

}
void Car::steer(int degrees)
{
if(moving)
{
if(degrees == 0)
this->degrees = 0 ;
else
this->degrees += degrees ;
}
}
void Car::headLights(Switch onOrOff)
{
drivingLights = onOrOff ;
}

Save CAR.CPP and create a file named MAIN.cPP. This file should contain
the following:

#include <iostream>
using namespace std ;
#include "car.h"

int main()

{
Vehicle *sporty = new Car() ;
Car *luxury = new Car() ;

sporty->setSpeed(120) ;
sporty->decelerate(20) ;
luxury->setSpeed(35) ;

luxury->steer(20) ;

luxury->headLights(Vehicle::SWITCH_ON) ;
luxury->accelerate(15) ;

cout << "sporty's speed : " << sporty->getSpeed() << endl ;
cout << "pLuxury's speed: " << luxury->getSpeed() << endl ;

if(sporty->isMoving())

cout << "sporty is moving" << endl ;
else

cout << "sporty isn't moving" << endl ;

delete luxury ;
delete sporty ;

return 0 ;

CHAPTER 3

OBJECT ORIENTATION—C++ SPECIFICS

A Save maIn.cpp and return to the command line. Next, compile and link
MAIN.CPP, VEHICLE.CPP, and CAR.CPP as shown in the following:

gcc -c main.cpp vehicle.cpp car.cpp

If your compiler complains about the statement

#include <iostream>

comment out the using declaration following it and change the #include
line to

#include <iostream.h>

Run the program; the output should be as follows:

sporty's speed : 60
pLuxury's speed: 50
sporty is moving

If you are using the DIJGPP compiler, you might have to rename the
executable from A.OUT to MAIN.EXE to execute the program.

How It Works

In the file VEHICLE.CPP, you prefixed the virtual keyword to vehicle’s
destructor and six member functions. Only member functions and class
destructor can be virtual; class data members can not be virtual. The C++
language uses the virtual keyword to specify a member function that is
dynamically bound at runtime. Non-virtual member functions are statically
bound; this means that the compiler knows the proper function to call at
compile time. The call is made depending on the type of the reference.
Conversely, a virtual member function call is determined at runtime. The
member function that is called depends on the actual type of the object. Even if
a pointer to the object is a base pointer of the object, the proper function will
be called.

The virtual behavior of a member function is inherited by derived classes. If
a member function is redeclared in a derived class, and that member function is
declared virtual in the base class, the derived class member function is also
virtual. Some class designers insist that the virtual keyword be applied to
virtual member functions in derived classes. This is a visual reminder to
developers that the member functions are indeed virtual.

Notice that in VEHICLE.H the virtual keyword is prefixed to each of the
public member functions and the destructor. It is especially important that you
apply the virtual keyword to the destructor of a class that will be inherited

3.4

IMPLEMENT POLYMORPHISM IN C++

from. This guarantees the proper chain of destruction for the derived class
object and for each base class object.

Now turn your attention to the declaration of the car class found in CAR.H.
The car class is inherited from the vehicle class. In the public section, you
will find declarations for the constructor and destructor of the class.

The next declaration in the class

unsigned int setSpeed(unsigned int speedIn) ;

redeclares the member function setSpeed found in the base class vehicle.
Remember that setSpeed is declared with the virtual keyword in vehicle, SO
Car’s setSpeed function is also virtual.

The next two member function declarations

virtual void steer(int degrees) ;
virtual void headLights(Switch onOrOff) ;

introduce two new member functions for class car. Neither of these two
member functions is declared in vehicle. You do, however, declare them
virtual so that any derived class of car can use the dynamic binding
mechanism.

The class declaration is finished with the declaration of two private data
members named degrees and drivingLights. The degrees variable will
maintain the state of degrees of steering and drivingLights will hold the state
of the headlights (on or off).

You should familiarize yourself with the implementation of the car class
found in the cAR.cPp file. | will not detail the functionality of the car class
here, but will concentrate on the functionality of the main function found in
MAIN.CPP.

Each of the first two statements in function main creates an instance of type
Car as shown here:

Vehicle *sporty = new Car() ;
Car *luxury = new Car() ;

Notice that the first statement declares sporty to be a pointer to a vehicle
object, whereas 1uxury is declared to be a pointer to a car object. It is
important to remember this as you move through the code. The new expression
in each statement both creates an object of type car and returns a pointer. The
pointer returned to luxury is of type car, but for sporty, the pointer returned
is of type vehicle.

Look at the next two lines of code:

sporty->setSpeed(120) ;
sporty->decelerate(20) ;

m CHAPTER 3
OBJECT ORIENTATION—C++ SPECIFICS

The first statement is a call to the member function setSpeed through the
pointer sporty. Is the call made to the setSpeed member function defined in
Vehicle or car? You might think that because the pointer is of type vehicle
that vehicle’s setSpeed function is called. However, in actuality, it is car'’s
setSpeed function that is invoked. Remember that the setSpeed member
function is declared virtual in the base class. The rule is this: A function is
invoked based on the type of the object, not the reference (or pointer) to the
object. This behavior is confirmed with the output of sporty’s speed, which is
60. If setSpeed were called for the vehicle class, the speed reported for
sporty would be 100.

Each of the next four lines of code that follow

luxury->setSpeed(35) ;

luxury->steer(20) ;

luxury->headLights(Vehicle::SWITCH_ON) ;
luxury->accelerate(15) ;

calls the specified member function of the car class, with the exception of
accelerate. The member function accelerate is not redeclared for the car
class, so it is Vehicle: :accelerate that is invoked.

The two cout statements print out the speed value for each object. The
if-else statement that follows reports whether the sporty object is moving.

Finally, the delete expression is called for each dynamically allocated object.

Comments

The power of polymorphism offers you the opportunity to manipulate more
than one derived type object with just a base class pointer (or reference).
Because you can refer to a derived type object using a base class pointer, you
can write programs without regard to the actual object.

The following example should help to clarify the power of polymorphism.
Suppose you create two new classes, SportsCar and Stationwagon, both
derived from car. Obviously, an object of type SportscCar accelerates and
decelerates differently than an object of type Stationwagon. Without the use of
polymorphism, a possible implementation would be as follows:

/..
if(typeid(StationWagon) == typeid(*pType))

StationWagon *p = (StationWagon *)pType ;
p->steer(14) ;
p->accelerate(5) ;

}
else if(typeid(SportsCar) == typeid(*pType))

3.5

}

IMPLEMENT STATIC MEMBERS OF A CLASS

SportsCar *p = (SportsCar *)pType ;
p->steer(25) ;
p->accelerate(20) ;

else if(typeid(Car) == typeid(*pType))

{

Car *p = (Car *)pType ;
p->steer(16) ;
p->accelerate(10) ;

The typeid operator is used to return a const reference to a type_info
object. The argument to typeid is either a type name or expression. An
expression can be a reference or pointer of some type. If the expression is a
reference or pointer, the type_info reference reveals the actual type referred to,
not the type of the reference (or pointer). You can use the operator==and
operator!= member functions to determine the equality, or inequality, of two
type_info objects.

Consider what would be required if you added another type derived from
car to your hierarchy. You would have to visit all runtime type information
(RTTI) logic, make appropriate enhancements, and recompile the whole affair.
As the name suggests, RTTI is used to retrieve information about an object at
runtime. The runtime identification mechanism is implemented with respect to
polymorphic types. This implies that a class must contain at least one virtual
function. The performance and readability penalty will also be high with all the
if-elses to step through. Virtual functions are a more elegant solution to this
type of runtime logic, as you have seen in this How-To.

COMPLEXITY

3.5

INTERMEDIATE
How do I...

Implement static members of a
class?

Problem

| have heard that class members can be declared with the static keyword. |
would like to know when to use a static member for a class and the syntax
required for declaring one.

CHAPTER 3

OBJECT ORIENTATION—C++ SPECIFICS

Technique

In this How-To, a program will be used to demonstrate the use of a static data
member of a class. Static data members can be quite useful for certain
programming situations. In this How-To, you will discover one such use with
the program provided.

Steps

Change to the base directory and create a new subdirectory named
STATIC.

Start your code editor and type the following code into a file named
STATIC.CPP:

// static.cpp - this file contains a class
// that utilizes a static member.

#include <iostream>

using namespace std ;

class Base
{
public:
Base() { +t+instanceCnt ; }
~Base() { --instanceCnt ; }
int count() const { return(instanceCnt) ; }
private:
static int instanceCnt ;
Y
int Base::instanceCnt = 0 ;
int main()
{
Base *b[10] ;

inti=20;

for(i =0; i < 10; i++)
b[1] = new Base ;

cout << "Instance count #1: " << b[@]->count() << endl ;

for(1 =0; 1 < 9; i++)
delete b[i] ;

cout << "Instance count #2: " << b[@]->count() << endl ;
delete b[0] ;

return 0 ;

3.5

IMPLEMENT STATIC MEMBERS OF A CLASS

Save STATIC.CPP and return to the command line. Next, compile and
link sTATIC.CPP as in the following example:

gcc -c static.cpp

If your compiler complains about the statement

#include <iostream>

comment out (or remove) the using directive following it and change the
#include line to

#include <iostream.h>

Run the program; the output should be as follows:
Instance count #1: 10
Instance count #2: 1

If you are using the DJGPP compiler, you might have to rename the
executable from A.OUT to STATIC.EXE in order to execute the program.

How It Works

Let’s begin by examining the declaration of Base in STATIC.CPP. The first
declaration in the class is the default constructor, as shown here:

Base() { ++instanceCnt ; }
The constructor is defined as an inline member function because its

definition occurs inside the class’s declaration. The constructor contains only a
single statement, incrementing the static member variable instancecCnt.

The next declaration, which is also an inline member function, is the
destructor. The logic found in the destructor is the inverse of the constructor: to
decrement the static data member instanceCnt.

The third declaration
int count() const { return(instanceCnt) ; }
is also the definition of a const member function that returns the value

contained in instancecnt. This member function is also considered for inlining
because its definition occurs inside the class declaration.

Rounding out the class declaration, in the private section, you find the
declaration of a static member, as shown here;

static int instanceCnt ;

CHAPTER 3

OBJECT ORIENTATION—C++ SPECIFICS

This declaration is no different from any other data member declaration,
except for the static keyword prefix. What is the difference between a static
and non-static data member? Only a single instance will exist for a static data
member at runtime, no matter how many objects are created for the class. For
non-static data members, a copy will exist for every object instance. Data
members that are non-static are also referred to as instance variables. This
suggests that each instance of a class will get its own unique set of non-static
data members. The opposite occurs with static data members—no matter if
there is one class object or thirty objects at runtime, a single copy of each static
data member will exist for all objects instantiated. All instances of a class share
any static data members declared.

The next line of code in the file

int Base::instanceCnt = 0 ;

defines and initializes the static data member. All static data members of a class
must be defined outside of the class declaration. Notice that the name of the
class followed by the scope resolution operator is given, in addition to the name
of the static data member.

The first statement within the main function declares an array of 10 pointers
of type Base. The second statement within main defines i as an integer variable.

Next, a for loop is introduced. Ten objects of type Base are created in the
free store. A pointer to each of those objects is accumulated in the array
named b.

The next line of code

cout << "Instance count #1: " << b[@]->count() << endl ;

prints out the contents of the static data member. Moving through the code,
you find a second for loop. This loop is used to deallocate the objects that
were allocated in the previous loop. The difference is that the loop only counts
up to ten because you want to leave one object around for the next program
statement:

cout << "Instance count #2: " << b[@]->count() << endl ;

The value 1 is printed, as expected. The line that follows this cout statement
deletes the last remaining object.

Comments

Class member functions can also be declared static. A static member function
can be invoked, even if there are no instances of the class where it is declared.
The only data members that a static member function can access are static data
members because a static member function is not associated with any particular
instance of a class. The following class declaration contains a declaration and
the definition of a static member function:

3.5

IMPLEMENT STATIC MEMBERS OF A CLASS

class Base
{
public:
static int count(void) ;
}
int Base::count()
{
/...
}

Notice that the static keyword is not used at the definition of the member
function. Because count is declared with public visibility, it can be invoked as
shown in the following code snippet:

int main()
{
Base::count() ;
/..
}

Because it belongs to a class, a static data member does not pollute the
global namespace. This helps to reduce name clashes that might otherwise
occur. You should not define a static data member inside the header file
containing the class declaration; define it in the implementation file.

PART ||
DATA STRUCTURES

— CHAPTER 4
STRUCTURES VERSUS

CLASSES

STRUCTURES VERSUS
CLASSES

How do I...

4.1 Create my own data type?

4.2 Hide my data from external programs?

4.3 Use encapsulation? What steps are required to
encapsulate data?

4.4 Create my own operators?

4.5 Overload relational and equality operators?

4.6 Provide access to encapsulated data to certain
classes?

4.7 Maintain global data in my program?

4.8 Know when | should use structures and when |

should use classes?

One of the most important things to understand in C++ programming is
the usage of classes. Classes can be thought of as the fundamental building
blocks of object-oriented programming. The notion of classes is a new one
for C programmers. Even if they know the language syntax it is sometimes
hard to get a proper understanding of the new programming paradigm.
Data encapsulation and private and public members can confuse even an
experienced programmer.

CHAPTER 4

4.1

4.2

4.3

STRUCTURES VERSUS CLASSES

Structures in C (and C++) provide a powerful ability to create new data
types. Using standard data types and other programming constructs, one can
combine them in a very sophisticated structure. Programmers skills can be
proven by an appropriate structural description of data. Combining logically
connected data in one set makes programs more readable and easier to main-
tain. This is very important because it leads to decreased maintenance costs.

A very confusing feature of C++ is that there is no technical difference
between classes and structures. They differ only in default access rights to their
members. Therefore, the question “What should | use: classes or structures?”
becomes very important.

This chapter is intended to answer that question and describe the process of
encapsulation by showing it step by step. Encapsulation is one of the main
features of object-oriented programming languages, and it is discussed in detail
in order to show how you can use it to create your own data types or maintain
global variables.

Other class features closely related to encapsulation are discussed. This
chapter shows how you can overload operators to make the code more readable
and create friend functions for related classes.

Create My Own Data Type

Standard C++ data types such as int, char, float, and double never satisfied
programmers. Maintaining date and time as a variable of one DateTime type
instead of using 5 or 6 different integers was always a very convenient
approach. This How-To is an introduction to C++ structures, and it shows how
to create, copy, and pass structures as function parameters, as well as return
them as function results.

Hide My Data from External Programs

Classes are one of the most important features of C++ programming. In fact,
C++ was originally called “C with classes.” This How-To explains how to create
classes using the idea of encapsulation. The process of the stack class creation
is described in detail. The example also shows that changing a member func-
tion's definition does not result in changes of the calling program.

Use Encapsulation? What Steps Are Required to
Encapsulate Data

A common mistake some programmers make is thinking that encapsulation can
provide security for class data. The main idea of encapsulation is to improve the
code by making it simpler and more readable. This How-To uses the employee
class to show step by step how to implement encapsulation.

CHAPTER 4

4.4

4.5

4.6

4.7

4.8

STRUCTURES VERSUS CLASSES

Create My Own Operators

Creating new data types is a process of describing objects to store data as well
as methods to operate on that data. When a class is implemented as a new data
type, you create member functions to support data operations. However some-
times modifying the + operator (via operator overloading) instead of creating an
Add function can dramatically improve the code. This How-To describes how
and when a user can use operator overloading.

Overload Relational and Equality Operators

Operator overloading is one of the very attractive features of C++. Almost all
C++ operators can be overloaded and significantly increase the language capa-
bilities. This How-To describes the basic concept of operator overloading using
the example of relational and equality operators.

Provide Access to Encapsulated Data to Certain
Classes

Encapsulation is a powerful methodology that makes objects independent and
less vulnerable. In the ideal-world model, you could make all objects talk to
each other by means of public methods. However, in real life you often have to
allow certain classes access to private data of another class. To help do this, C++
supports the concept of friend functions and friend classes. This How-To
describes how to use them.

Maintain Global Data in My Program

Old-style programmers often ask: “Should | use global data in my programs?”
The question is very important because even in a well-structured program that
follows a modular approach, data can be shared by many modules. Making the
data global was a standard technique of procedural programming for years. This
How-To shows how to create global data using classes and encapsulation.

Know When | Should Use Structures and When |
Should Use Classes

The only difference between classes and structures in C++ is the default access
to their members. It can be confusing for C programmers who used structures
very extensively. This How-To creates an example of a linked list implementa-
tion. This example illustrates a common approach for using structures to store a
new data type and for using classes as programming units.

CHAPTER 4

STRUCTURES VERSUS CLASSES

COMPLEXITY

BEGINNING

4.1 How dol...
Create my own data type?

Problem

Every time | need to use dates in my program | experience a problem working
with three different entities: days, months and years. It works fine if | use them
separately such as when | want to present numeric values based on month
names. However, it is too boring to write three statements if | need to copy one
date to another date or if | need to pass dates as parameters to a function. Can |
use the date variables both as three separate entities and as one entity
depending on my needs?

Technique

To combine different variables into one data type in order to maintain them
together as a unit, you can use structures. Data combined into a structure can
be utilized as separate variables, too. By using structures in C and C++, you can
create your own data types. C programmers already know how to use structures
and the struct keyword in their programs. In C++, the syntax of structures is a
little different than in the C programming language.

Steps

Determine the variables

When designing a program, you have to analyze the data that you are
going to use in that program. Any data type is described by the data range
it can handle and by the operations that can be performed on the data.
Assume in this example that you are creating a big program that will
calculate date difference, display the dates and the number of days from
the beginning of the year, construct the dates in future based on the
current date, and do a lot of other data manipulation. The program is
going to work with days, months, and years, and that means it needs
these three variables at a minimum.

Determine the variable data types

Days in a month range from 1 to 31, months range from 1 to 12, and the
years range depends on the application. Assume you are writing a busi-

ness application that handles dates from 1900 to 2100. Note that you can
define the variables as integers, floats, char arrays, or use other data types
as well. The decision about the data type is often based on the operations

4.1

CREATE MY OWN DATA TYPE

you are going to perform. The very first thing you are going to do is to
display the dates; then you definitely want to calculate the dates by
adding or subtracting a certain number of days to the dates.

Because we don't want to confuse ourselves with decimal points and
because there is no need to use them, we are not going to use floats. We
won't use strings because of the addition and subtraction that we want to
perform. Its much simpler to add integers than strings, isn't it? Therefore,
the logic forces us to select an integer data type for all variables.

Now we can specify the variables:

int ddate;
int mmonth;
int yyear;

Using the variables separately

Let’s assume that our first task is to calculate the date next to the given
date and to display it. We assume that a user does not make mistakes in
entering the data, so we don't have to trap the mistakes.

// incdate.cpp
// The program increments a given date
// and displays the result

#include <iostream.h>

int main()

{

int DaysInMonth[12] = {31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31};
int LeapYear;

int dday1, dday2;
int mmonth1, mmonth2;
int yyeart, yyear2;

// Enter a base date
cout << "Enter day (integer): ";
cin >> dday1;
cout << "Enter month (integer): ";
cin >> mmonthi;
cout << "Enter year (integer): ";
cin >> yyeari;

// Calculate the next date
if ((yyear1 % 4) == Q) LeapYear = true;
dday2 = ddayi+ 1;

if ((LeapYear) && (dday1l == 29) && (mmonthi1 == 2))
{ dday2 = 1; mmonth2= 3; yyear1 = yyeari;}
else if (dday2 > DaysInMonth[mmonth1 - 1])

CHAPTER 4

STRUCTURES VERSUS CLASSES

{

mmonth2 = mmonthi+ 1;
dday2 = 1;
}
else
mmonth2 = mmonthi;

if (mmonth2 == 13)
{
mmonth2 13
yyear2 = yyearl + 1;
}
else
yyear2 = yyeari;

// Display the result
cout << "The next date after " << ddayl << "/" << mmontht;
cout << "/" << yyearl << " is " << dday2 << "/" << mmonth2;
cout << "/" << yyear2 << endl;

return 0;
First step is to combine the data

The previous program works just fine if we don't have to do anything
else. In an actual application, every step increases the complexity of the
program and makes it less readable. The first reasonable step in practicing
better coding is to combine the variables into the structures so we don't
have to consider them as separate entities.

Let’s rewrite the program using structures.

// incdatel.cpp
// The program increments a given date
// and displays the result

#include <iostream.h>

int main()

{

int DaysInMonth[12] = {31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31};
int LeapYear;

struct DDate{
int dday;
int mmonth;
int yyear;

b
DDate ddate1, ddate2;

// Enter a base date
cout << "Enter day (integer): ";

4.1

CREATE MY OWN DATA TYPE

cin >> ddatei.dday;

cout << "Enter month (integer): ";
cin >> ddatei.mmonth;

cout << "Enter year (integer): ";
cin >> ddatel.yyear;

// Calculate the next date
if ((ddatel.yyear % 4) == 0) LeapYear = true;
ddate2.dday = ddatel.dday+ 1;

if ((LeapYear) && (ddatel.dday == 29) && (ddatel.mmonth == 2))
{ ddate2.dday = 1; ddate2.mmonth= 3; ddate2.yyear =
Oddatel.yyear;}
else if ((LeapYear) && (ddatel.dday == 28) &&
0 (ddate1.mmonth == 2))
{ ddate2.dday = 29; ddate2.mmonth= 2; ddate2.yyear =
Oddatel.yyear;}
else if (ddate2.dday > DaysInMonth[ddate1.mmonth - 1])
{
ddate2.mmonth =
ddate2.dday = 1;
}
else
ddate2.mmonth = ddatel.mmonth;

ddatet1.mmonth+ 1;

if (ddate2.mmonth == 13)

{
ddate2.mmonth = 1;
ddate2.yyear = ddatel.yyear + 1;

}

else
ddate2.yyear = ddatel.yyear;

// Display the result
cout << "The next date after " << ddatel.dday << "/" <<
Oddatet1.mmonth;
cout << "/" << ddatel.yyear << " is " << ddate2.dday << "/" <<
Oddate2.mmonth;
cout << "/" << ddate2.yyear << endl;

return 0;

}

Please note that you don't have to use word struct in the DDate type
declaration as you did in C.

In the preceding example the structure is defined by

struct DDate{
int dday;
int mmonth;
int yyear;
};

Please note the semicolon at the end of the struct definition. This
is one of the very few places in C++ where a semicolon is used after
curly braces.

CHAPTER 4

STRUCTURES VERSUS CLASSES

Create functions

Did we make the program more readable? Did we save a few lines in the
code? | doubt it. What's the advantage of using structures?

The advantage will appear when we start to extend our program.
Therefore, the next thing we are going to do is create functions in our
program. The first function will enable the entering data, the second func-
tion will display dates, and the third function will calculate the next date
based on a given date.

// incdate2.cpp
// The program increments a given date
// and displays the result

#include <iostream.h>

struct DDate{
int dday;
int mmonth;
int yyear;
3

DDate GetDate(void);
void DisplayDate(DDate);
DDate GetNextDate(DDate);

int main()

{

DDate ddatel, ddate2;

// Enter a base date
ddatel= GetDate();
// Calculate the next date
ddate2= GetNextDate(ddatel);
// Display the result
cout << "The next date after ";
DisplayDate(ddatel);
cout << " is ";
DisplayDate(ddate2);
cout << endl;

return 0;

}

// GetDate function gets the date into
// a DDate variable
DDate GetDate(void)

{
DDate ddate;

cout << "Enter day (integer): ";
cin >> ddate.dday;
cout << "Enter month (integer): ";

4.1

CREATE MY OWN DATA TYPE

cin >> ddate.mmonth;
cout << "Enter year (integer): ";
cin >> ddate.yyear;

return ddate;

}

// Displays a variable of DDate type

void DisplayDate(DDate ddate)

{
cout << ddate.dday << "/" << ddate.mmonth << "/" <<
Oddate.yyear;

}

// Calculates the next date
DDate GetNextDate(DDate ddate)

{
DDate ddateNext;

int DaysInMonth[12] = {31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31};
int LeapYear;

if ((ddate.yyear % 4) == Q) LeapYear = true;
ddateNext.dday = ddate.dday+ 1;

if ((LeapYear) && (ddate.dday == 29) && (ddate.mmonth == 2))
{ ddateNext.dday = 1; ddateNext.mmonth= 3;
OJddateNext.yyear = ddate.yyear;}
else if ((LeapYear) && (ddatel.dday == 28) &&
0 (ddate1.mmonth == 2))
{ ddate2.dday = 29; ddate2.mmonth= 2; ddate2.yyear =
Oddatet.yyear;}
else if (ddateNext.dday > DaysInMonth[ddate.mmonth - 1])
{
ddateNext.mmonth = ddate.mmonth+ 1;
ddateNext.dday = 1;
}
else
ddateNext.mmonth = ddate.mmonth;

if (ddateNext.mmonth == 13)
{
ddateNext.mmonth 1;
ddateNext.yyear = ddate.yyear + 1;
}

else
ddateNext.yyear = ddate.yyear;

return ddateNext;

}

Now we can say that we created our own data type: bbate. We can define
variables of this data type, use this data type in function definitions, and
we can pass parameters of this data type to the functions.

CHAPTER 4

STRUCTURES VERSUS CLASSES

In fact, as long as we work with the main program we even don't need to
know what is included in this data type.

Using the assignment (=) operator

A big advantage of using structures is that we can assign one variable of a
new type to another variable of the same type just by writing

a = b;

where a and b are variables of the same structure. For example, lets write
a program that takes a DDate variable, copies it to another variable, and
displays both variables. We are going to use GetDate and DisplayDate
functions from the previous example.

// assignd.cpp
// The program increments a given date
// and displays the result

#include <iostream.h>

struct DDate{
int dday;
int mmonth;
int yyear;

b

DDate GetDate(void);
void DisplayDate(DDate);

int main()

{
DDate ddateil, ddate2;
// Enter a base date

ddatel= GetDate();
// copy ddatel to ddate2
ddate2= ddateil;
// Display the result
cout << "The first date is ";
DisplayDate(ddatel);
cout << endl;
cout << "The second date is ";
DisplayDate(ddate2);
cout << endl;

return 0;

4.1

CREATE MY OWN DATA TYPE

}

// GetDate function gets the date into
// a DDate variable
DDate GetDate(void)

{
DDate ddate;

cout << "Enter day (integer): ";
cin >> ddate.dday;

cout << "Enter month (integer): ";
cin >> ddate.mmonth;

cout << "Enter year (integer): ";
cin >> ddate.yyear;

return ddate;

}

// Dispalys a variable of DDate type
void DisplayDate(DDate ddate)

{
cout << ddate.dday << "/" << ddate.mmonth << "/" <<
Oddate.yyear;
}
Comments

Creating a C++ structure creates a new data type that can be accessed by its
own name, such as DDate in the previous example. When declaring a new
structure, you don't have to use the struct keyword as in C. The individual
elements of a structure are called structure members and can be accessed by the
structure member (.) operator (dot operator).

Structures are very helpful if you want to logically combine different vari-
ables to use them as a set. They are similar to arrays in the sense that both
arrays and structures are sets of variables stored under the same name.
However, arrays are aggregates of the elements of the same nature and therefore
the same data type. Structure members usually represent data of a different
nature and can have different types.

You can create many instances of the same structure just as you can create
many variables of the same type. You can assign objects of structure types to
other objects of the same type, you can pass them as function parameters, or
return them as a function result.

CHAPTER 4

STRUCTURES VERSUS CLASSES

COMPLEXITY

INTERMEDIATE

4.2 How do l...
Hide my data from external
programs?
Problem

I want to create functions that use my own data types. For example, | often use
stacks and | want other modules working with my module not to have the
ability to change my implementation of stacks. In other words, | want my
implementation to be hidden from external modules.

Technique

In C++, you can create your own data type (such as a stack or a queue) and
specify operations on this data type. To make the specification of the data type
complete, you can hide all internal information in a class.

Steps
Define data

The purpose of this example is to create a new data type to maintain
stacks. As you might know, a stack is a data structure with a very simple
access rule: last in, first out. Data elements stored in a stack should be
of the same type (however, the elements can be of a simple standard
data type like integer, or they can have a complex data type like pointer
to structures). Data elements are stored in a stack in a linear fashion,
one by one, and the stack capacity is predefined. Figure 4.1 shows the
stack operations.

Element 4 l PUSH T POP Element 4

Element 3 Element 4 Element 3

Element 2 Element 3 Element 2

Element 1 Element 2 Element 1
Element 1

Figure 4.1 The stack operations.

4.2

HIDE MY DATA FROM EXTERNAL PROGRAMS

We are going to start with a stack that handles characters. The stack
length will be 256, and will be implemented as an array. This means that
our data will be described as an array of characters:

char SStackBuffer[256];

Specify functions according to the operations

The next step will describe the operations that we can perform on the
stack and the functions that we are going to implement.

Traditionally we consider a stack to be a data storage structure where we
can push the data in or pop the data out. Usually, when we think of
pushing the data into the stack, we assume that the other elements are
moving to the stack bottom. When we imagine popping an element from
the stack, we assume that the other elements are moving to the top.
However, this is not a necessary behavior. The only thing we care of when
implementing the stack is to follow the last in, first out (LIFO) rule.

To push and pop elements we are going to create two functions, Push and
Pop. These functions’ declarations are as follows:

// The Push method pushes the c character into the stack.
// It returns 1 if success.
// It returns @ if failure (the stack is full).

int Push (char c);

// The Pop method moves the top character from the stack
// to the c character.
// It returns 1 if success.
// It returns @ if failure (the stack is empty).
int Pop (char& c);

We constructed the stack as an array and declared two functions to
support the stack operations. However, the two functions bring up two
problems: What should the program do if we try to push an element into
the stack and there is no space for it? Also, what should the program do if
we try to move the top element out of the empty stack?

These questions result in two more functions, Isempty and IsFull:

// The IsEmpty method determines if the stack is empty.
// If yes, it returns 1 (true).
// If no, it returns @ (false).

int IsEmpty(void);

// The IsFull method determines if the stack is full.
/] If yes, it returns 1 (true).
// If no, it returns @ (false).

int IsFull(void);

CHAPTER 4

STRUCTURES VERSUS CLASSES

Create a class

Classes are the core of C++ programming. In the very beginning of C++
history, Bjarne Stroustrup, the author of the language, called C++ “C
with classes.” We can consider classes as new data types at least at this
stage. Lets create a class declaration for our stack and learn a little about
class components.

// This is a stack class
/1l

class SStack
{

private:

char SStackBuffer[256];
int CurrentElement;

public:
SStack(void); /] Constructor
~SStack(void); // Destructor

// The Push method pushes the c character into the stack.
// It returns 1 if success.
// It returns @ if failure (the stack is full).

int Push (char c);

// The Pop method moves the top character from the stack
// to the c character.
// It returns 1 if success.
// It returns @ if failure (the stack is empty).
int Pop (char& c);

// The IsEmpty method determines if the stack is empty.
// If yes, it returns 1 (true).
// If no, it returns @ (false).

int IsEmpty(void);

// The IsFull method determines if the stack is full.
// If yes, it returns 1 (true).
// If no, it returns @ (false).

int IsFull(void);

};

The preceding code represents a class declaration. This is very similar to
structure declarations (and, in C++, classes and structures differ only in
default access rights to the data). Let's see how the class is constructed.

The sStack class specifies data members

char SStackBuffer[256];
int CurrentElement;

and member functions

4.2

HIDE MY DATA FROM EXTERNAL PROGRAMS

int Push (char c);
int Pop (char& c);
int IsEmpty(void);
int IsFull(void);

The main concept behind classes is the combination into one single entity
of data and algorithms that process the data. The data items are called
data members and the algorithms are called member functions. In other
books you can find names such as methods and function members for
member functions.

There are two new functions in the class:

SStack(void); // Constructor
~SStack(void); // Destructor

SStack() and ~SStack () are the constructor and destructor of the class.
The name of the constructor is the same as the name of the class itself.
The name of the destructor is the name of the class starting with a tilde
(~). The functions play a special role. After an instance of the class is
created, the constructor is executed. When a class object finishes its life
cycle, the destructor is called. At this point, we are not going to define the
functions, we just declared them for future use.

In this class declaration we use two access control keywords: private
and public. By default, all data members and member functions are
private. However, including the private keyword in the code makes it
more readable and structured. Figure 4.2 specifies these important
features of classes.

class (SStack) <€ Class name
{

Access control

G e

char SStackBuffer[256];
int CurrentElement;

Private section = = = = -

Public: .
Constructor .

Destructor 4

SStack(void);
~SStack(void);

Int Push (char c); Public section
Int Pop (char& c);
Int ISEmpty(void);

Int IsFull(void);

A

k

Figure 4.2 Important features of classes.

CHAPTER 4

STRUCTURES VERSUS CLASSES

Now we are ready to answer the question of this section: “How do | hide
my data?” The answer is to make the data private and create public func-
tions to access the data. Other programs should know nothing about the
implementation of the SStack data type and consider the data type as
data storage with a few possible operations on it.

The methodology of hiding data inside classes is called encapsulation.
One of the main components of encapsulation is to allow objects direct
access only to their own data. The objects’ communication is shown

in Figure 4.3.
<> N — <>
Data Functions Functions Data
| OBJECT 1 | | OBJECT 2

Figure 4.3 Encapsulation.

Class implementation

To code actual class functions, we have to design the logic of maintaining
the stack. Because we decided to use an array for the stack implementa-
tion, we are going to change the strategy of actual elements moving inside
the stack. Figure 4.4 shows the implementation of the stack.

Element 4

Element 1 Element 2 Element 3

PUSH

Element 1 Element 2 Element 3 Element 4

POP

| Element 1 | Element 2 | Element 3 |

Element 4

Figure 4.4 Implementation with arrays.

4.2

HIDE MY DATA FROM EXTERNAL PROGRAMS

The following code defines the stack class:

// Class declaration
// file stack.h

class SStack
{

private:

char SStackBuffer[256];
int CurrentElement;

public:
SStack(void); // Constructor
~SStack(void); // Destructor

int Push (char c);
int Pop (char& c);
int IsEmpty(void);
int IsFull(void);

}

The preceding code is the class declaration. It is a well-known practice to
separate class declarations in header files. In this example the code is
located in the file stack.h.

// Class definition
/1 file stack.cpp

#include "stack.h"
// Constructor

SStack::SStack(void)
{

CurrentElement = -1;

}
// Destructor
// is empty yet

SStack::~SStack(void)
{

}

// The IsEmpty method determines if the stack is empty.
// If yes, it returns 1 (true).
// If no, it returns 0 (false).

int SStack::IsEmpty(void)

{

if (CurrentElement < @) return 1;
else return 0;

CHAPTER 4

STRUCTURES VERSUS CLASSES

}

// The IsFull method determines if the stack is full.
// If yes, it returns 1 (true).
// If no, it returns @ (false).

int SStack::IsFull(void)
{

if (CurrentElement >= 256) return 1;
else return 0;

}

// The Push method pushes the c character into the stack.
// It returns 1 if success.

// It returns @ if failure (the stack is full).

int SStack::Push (char c)

{
if (IsFull()) return 0;
SStackBuffer[++CurrentElement]= c;
return 1;

}

// The Pop method moves the top character from the stack
// to the c character.

// It returns 1 if success.

// It returns @ if failure (the stack is empty).

int SStack::Pop (char& c)

{
if (IsEmpty()) return 0;
c= SStackBuffer[CurrentElement--];
return 1;

}

The preceding code is the class implementation (or class definition). Note
that we used the scope resolution operator (::) to define the member
functions in our class.

The sStack constructor initializes the currentElement variable. The vari-
able is intended to handle the number of the element most recently
pushed into the stack. The variable is initialized with -1 to show that at
the very beginning there is no current element in the stack.

The IsFull and IsEmpty functions check whether the CurrentElement is
within the limits from O to 255. They are executed in Push and Pop func-
tions, respectively.

Test the class

To test that our class works correctly, we are going to write a small
program that displays Hello, world! in the reverse order. Please note
that we are creating the program in a separate file. Therefore, we included
stack.h in the program.

4.2

HIDE MY DATA FROM EXTERNAL PROGRAMS

// Test program for the stack class
// the program displays "Hello, world!"
// in the reverse order

#include <iostream.h>
#include <string.h>

#include "stack.h"

int main()

{

unsigned int 1i;

SStack TestStack;

char buffer[80];

memset (buffer, 0x00, 80);

strcpy (buffer, "Hello, world!");

for (i= @; i <strlen (buffer); it+)
TestStack.Push(buffer[i]);

i= 0;
while (!TestStack.IsEmpty())
TestStack.Pop(buffer[it++]);

cout << buffer << endl;

return 0;

}

The program simply takes the string Hello, world!, pushes it into the
stack, and then moves the stack elements into the buffer in the reverse
order. If you run this program the line

!dlrow ,o0lleH
will appear on the screen.

The main program shows the result of the encapsulation. The program
doesn't know anything about the array implementation of the stack.
Because the data is hidden in the class using the private keyword, the
main program can't see the data. Also, because the member functions Pop
and Push are the only tools to access the stack (and we took care of the
IsFull and IsEmpty Situations), no external program can change or
destroy the data in the class.

I More advantages of encapsulation

| personally don't like the implementation of the stack that we've created.
The array that we defined in the class is a good approach if we don't want
to extend the stack. Currently we are limited to 256 elements of our
stack. What would we do if we needed a bigger stack? In that case, we

CHAPTER 4

STRUCTURES VERSUS CLASSES

would have to change this number and recompile the class. This is too
much of a hassle when working with a big project.

Let’s create a more flexible class and change the array to a string with
nonfixed length. The actual length will be passed from the main program
as a parameter to the class constructor.

// Class declaration
/] file stack.h

class SStack
{

private:
int SStackLength;

char* SStackBuffer;
int CurrentElement;

public:
SStack(int InilLength=256); // Constructor
~SStack(void); // Destructor

int Push (char c);
int Pop (char& c);
int IsEmpty(void);
int IsFull(void);

}

In the class declaration we changed the data section. We added one more
variable that will represent the length of the stack and changed the array
to the pointer to a string of characters.

In the function section we changed the constructor function. It will
accept the length of the stack defaulting to 256.

To support the new stack implementation, we have to change the class
definition.

// Class definition
/1 file stackl.cpp

#include "stackl.h"
// Constructor

SStack::SStack(int IniLength)
{

CurrentElement = -1;
if (IniLength < 256) SStackLength = 256;
else SStackLength = IniLength;

4.2

HIDE MY DATA FROM EXTERNAL PROGRAMS

SStackBuffer = new char [SStackLength];

}
// Destructor
// is empty yet

SStack: :~SStack(void)

{
delete [] SStackBuffer;

}

// The IsEmpty method determines if the stack is empty.
// If yes, it returns 1 (true).

// If no, it returns 0 (false).

int SStack::IsEmpty(void)

if (CurrentElement < @) return 1;
else return 0;

}

// The IsFull method determines if the stack is full.
/] If yes, it returns 1 (true).
// If no, it returns @ (false).

int SStack::IsFull(void)

if (CurrentElement >= SStackLength) return 1;
else return 0;

}

// The Push method pushes the c character into the stack.
// It returns 1 if success.

// It returns @ if failure (the stack is full).

int SStack::Push (char c)

{
if (IsFull()) return 0;
*SStackBuffer++= c;
CurrentElement++;
return 1;

}

// The Pop method moves the top character from the stack
// to the c character.
// It returns 1 if success.
// It returns @ if failure (the stack is empty).
int SStack::Pop (char& c)
{
if (IsEmpty()) return 0;
c= *--SStackBuffer;
CurrentElement--;
return 1;

CHAPTER 4

STRUCTURES VERSUS CLASSES

The most important changes in the class were made to create the buffer
dynamically in the constructor using the new operator and destroy the
buffer in the destructor using the delete operator.

Should we change the main function?
No, we will not have to change the main function in our example.

The changes that we have made to the class implementation are internal
changes. A user of the class usually doesn’'t know how the class is imple-
mented. Because the data is hidden, and the function declarations haven't
been changed, an external program remains the same.

The changes that we made to the class constructor don't change the main
program because we allow a default initialization value for the stack
length. However, because the class provides us now with a more powerful
constructor, we can select the length of the class ourselves in the external
program. For example

SStack TestStack(800);

would initialize a stack 800 characters long.

Comments

Classes provide us with a lot of powerful features to do object-oriented
programming. We can encapsulate data and create member functions for the
data access. This produces modular code and allows parts of the code to be
changed without redesigning the whole program.

Interestingly, that C++ syntax allows us to use structures exactly as we use
classes. The only difference between classes and structures is that the default
access is private in classes and public in structures. Basically, the question
“When do | use structures and when do | use classes?” is a question of
programming style. The most common programming style is to use structures
only for pure data handling and for creating new data types without specifying
operations on them. If you create a program that uses member functions in
structures, it will work but other programmers will have a tougher time main-
taining it.

Encapsulation is a methodology that hides data in classes, allowing access to
that data only by functions defined in the class. The functions also provide
necessary operations on the data, thereby increasing the power of classes as new
data types. Classes can be distributed as class libraries in an object form with
the interface defined by the member functions.

4.3

WHAT STEPS ARE REQUIRED TO ENCAPSULATE DATA

COMPLEXITY

129 py

INTERMEDIATE

4.3 How do l...
Use encapsulation? What steps
are required to encapsulate data?

Problem
I want to hide data in my class library in a way that nobody has access to it.
How can | use encapsulation to make sure that nobody will be able to change
or destroy my data?

Technique

A very important thing to understand is that hiding data from other program-
mers working on the same project is not always a wise choice. This can result
in making the code more complicated and therefore less maintainable.
Encapsulation does not put vulnerable data in restricted memory areas; it just
hides the data at compilation time.

Another very important thing to understand is that the intention to hide the
data from other people is wrong. There is no technique on the language level
for securing the data, and encapsulation was invented to make the code more
readable and object-oriented. The process of data encapsulation has a few steps.

We are going to give an example of encapsulation by creating an employee
data type for a business application.

Steps

Determine the data

Creating a new data type involves describing components of the data in
the application. If we decide to create a new employee data type, we have
to specify the information about employees that our application needs.

First of all, we need FirstName and LastName fields. The fields can be
character strings and be defined later in the code or they can be character
arrays with fixed lengths. In our example, we'll use arrays to make the
code a little simpler. Another group of fields that we definitely need is a
BirthDate (didn't | say that we would create an application for Human
Resources?) For the date of birth, we are going to use the bDbate structure
we defined in How-To 4.1. We will also add a last piece of data named
Salary that we can declare as int.

CHAPTER 4

STRUCTURES VERSUS CLASSES

The data can be declared as shown in the following:

struct DDate{

int dday;

int mmonth;

int yyear;

b
char FirstName[35];
char LastName[35];
DDate BirthDate;
int Salary;

Structures or classes?

Now we have to decide what we are going to use. If we were not going to
encapsulate the data, or if we just needed the data for keeping the
employee information, or if we were not going to create functions for
handling the data, it would be reasonable to use structures:
struct DDate{

int dday;

int mmonth;

int yyear;

s
struct Employee{
char FirstName[35];

char LastName[35];
DDate BirthDate;

int Salary;

b

However, we want to hide the data using encapsulation and create func-
tions to access the data. Therefore, we are going to create a class for
supporting the new data type. This is a common practice and following it
makes your code more understandable for other programmers.

Create access functions

Because we are going to hide the employee data from other program
modules, it is important to provide functions to access the data. Assuming
that the only operation we want to make the data visible is displaying the
data, we declare the appropriate function;

void Display(void);

The function will be a member of the class that handles the employee
data, so it does not need parameters.

Another function should enable the addition of the employee data; for
example, by typing it on the keyboard. We declare the setEmployee func-
tion for this purpose:

void SetEmployee(void);

4.3

WHAT STEPS ARE REQUIRED TO ENCAPSULATE DATA

When we hide data by encapsulation, we often provide functions to
access the data: a function for reading the data and/or a function for
setting the data.

Declaring a class

To write a class declaration we have to specify the following: a class name
(which is going to be Employee), a private section, and a public section.
Because we want to hide the data, we are going to write an appropriate
declaration in the private section. The functions are indented to provide
data access for external modules, so they will be located in the public
section.

/] employee class declaration
// file employee.h
class Employee{

private:
struct DDate{
int dday;
int mmonth;
int yyear;
}s
char FirstName[35];
char LastName[35];
DDate BirthDate;

int Salary;

public:
Employee(void); // constructor
~Employee(void); // destructor

void DisplayEmployee(void);
void SetEmployee(void);
}s

Implementing a class

Writing a class implementation consists of creating constructor and
destructor functions and of defining other member functions to access the
class data.

/1 class definition
// file employee.cpp

#include <iostream.h>
#include <string.h>
#include "employee.h"

Employee: :Employee(void)

{
memset(LastName, 0x00, strlen(FirstName));
memset (LastName, 0x00, strlen(LastName));

CHAPTER 4

STRUCTURES VERSUS CLASSES

Employee: :~Employee(void)
{
}

void Employee::DisplayEmployee(void)
{
cout << FirstName << " " << LastName << endl;
cout << "Date of birth: " << BirthDate.dday;
cout << "/" << BirthDate.mmonth << "/" << BirthDate.yyear;
cout << endl;

}

void Employee::SetEmployee(void)
{
char bdString[80];

cout << "Enter First Name: ";
cin >> FirstName;

cout << "Enter Last Name: ";
cin >> LastName;

cout << "Enter Salary: ";

cin >> Salary;

while (true)

{
cout << "Enter Birthdate (mm/dd/yy)";

cin >> bdString;

BirthDate.dday = (bdString[3] - '0')*10 +
bdString[4] - '0';

BirthDate.mmonth = (bdString[@] - '0')*10 +
bdString[1] - '0Q';

BirthDate.yyear = (bdString[6] - '0')*10 +
bdString[7] - '0Q';

if ((BirthDate.dday >= 1) && (BirthDate.dday <= 31))
if ((BirthDate.mmonth >= 1) && (BirthDate.mmonth <= 12))
break;

}

The constructor and destructor functions are quite obvious. The most
interesting part of the code is access functions.

The setEmployee function enables reading the data that the user enters
via a keyboard. The function fills the private data members with the
entered data. Because we hide the data (we cannot access the data
directly), this function becomes very important. Actually, this function
provides the only way to set an employee’s data.

A very common approach is to add validation procedures to this type of
function. In our case, the validation routine checks the correctness of the
entered date (not very intelligently, however). If the date is incorrect, the

4.3

WHAT STEPS ARE REQUIRED TO ENCAPSULATE DATA

function repeats the question to enter the date of birth. Adding a
validation code is very important because this is the way to control
the class data.

The DisplayEmployee function provides another window to the external
world. This function shows the data in the class. Assuming that the
salary field might be confidential, we don't display it.

Testing the class

To make sure that our class works, we are going to run a simple program
that defines an Employee object, gets the data, and then displays the data
on the screen.

// file empltest.cpp
#include "employee.h"

int main()

{

Employee EmplTest;
EmplTest.SetEmployee();
EmplTest.DisplayEmployee();

return 0;

}

If you try to access the data members directly, the compiler will generate
error messages. For example, if you try to display the employee’s last
name with the following statement:

cout << EmplTest.LastName;
the compiler will complain.
Amending the class

The two access functions provide a minimum set of operations on the
class data. This pair of operations (sometimes it is Get and Set, or Read
and write) is usually needed for a new data type.

Other operations are usually very specific. In our example, the operations
can be GetSalary (for getting the salary member) and
CompareEmployees (for comparing two Employee objects).

int Employee::GetSalary(void)
{

}

return Salary;

int Employee::CompareEmployees(Employee E1, Employee E2)

CHAPTER 4

STRUCTURES VERSUS CLASSES

{
return strcmp(E1.LastName, E2.LastName);
}
Comments

Encapsulation provides a methodology for creating true object-oriented
programs. By hiding the data from other objects and specifying access func-
tions, you can create a new data type with complete operational support.

Encapsulation does not provide security for the data. It only prevents
programming mistakes and can't prevent the destruction of data if someone
really wants to destroy it. Using encapsulation allows for more understandable
programs and produces a better programming style.

COMPLEXITY

4.4

INTERMEDIATE
How do I...

Create my own operators?

Problem

Complexi
Complex1

Complex1
Complexi

When | create new data types and specify functions, sometimes | don't like to
use functions when | could be using operators. For example, when creating a
class for complex numbers, | prefer to use the (+) operator rather than the Add
member function and the (-) operator rather than the subtract member func-
tion. In other words, | prefer

Complex2 + Complex3;
Complex2 - Complex3;

to

Complex2.Add(Complex3);
Complex2.Subtract(Complex3);

where Complex1, Complex2, and Complex3 are objects of the complex numbers
class.

Technique

To perform this kind of addition of class objects, you have to create special
member functions that overload the binary addition operator (+) and subtrac-
tion operator (-) when they appear between two objects of the complex
numbers class.

The technique, known as operator overloading, allows you to overload almost
all C++ operators except (.), (.*), (::), (2:), and sizeof. In this section we
cover in detail the technique for overloading binary operators.

4.4

CREATE MY OWN OPERATORS

Steps
Create a complex number class
The class we define in this example will have only add and subtract oper-

ations. Creating multiplication and division operations is a good exercise
that will be left to the reader.

// CComplex class declaration
// file ccomplex.h

class CComplex

{
private:
float rreal; // real part
float iimage; // imaginary part
public:
CComplex(void); // constructor
~CComplex(void); // destructor

/1 access functions
void GetComplex(void);
void DisplayComplex(void);

// arithmetic operations

CComplex Add(CComplex);
CComplex Subtract(CComplex);

};

// CComplex class definition
// file complex.cpp

#include <iostream.h>
#include "ccomplex.h"

CComplex: :CComplex()

{
rreal = 0.0;
iimage = 0.0;
}
CComplex::~CComplex()
{
}

// gets real and imaginary parts of the complex number
void CComplex: :GetComplex()
{

cout << "Enter Real Part: ";

cin >> rreal;

cout << "Enter Imaginary Part: ";

cin >> iimage;

CHAPTER 4

STRUCTURES VERSUS CLASSES

// displays the object of class CComplex
void CComplex::DisplayComplex()

{
cout << rreal;
if (iimage >= 0)
cout << " + " << iimage;
else
cout << " - " << -iimage;
cout << "i" << endl;
}

// adds two objects of class CComplex
CComplex CComplex::Add(CComplex Complexi)

{
CComplex NewComplex;
NewComplex.rreal = rreal + Complex1.rreal;
NewComplex.iimage = iimage + Complex1.iimage;
return NewComplex;

}

// subtracts CComplex object form another CComplex object
CComplex CComplex::Subtract(CComplex Complex1)

{
CComplex NewComplex;
NewComplex.rreal = rreal - Complex1.rreal;
NewComplex.iimage = iimage - Complex1.iimage;
return NewComplex;

}

The class we created consists of rreal and iimage data members that are
used for the real and imaginary parts of a complex humber. We specified
float data types for both parts.

The class supports access functions such as GetComplex and
DisplayComplex for inputting the real and imaginary parts and displaying
the complex number on the user’s monitor screen.

Testing the class

To test the class we created a small program that accepts two complex
numbers (Complex1 and complex2), adds them together, and stores the
result in the complex3 object of type cComplex. The program then
subtracts complex2 from Complex1 and stores the result in the Complex4
object. Finally, the program shows Complex3 and Complex4 on the user
screen.

/] file comptest.cpp

#include "ccomplex.h"

4.4

CREATE MY OWN OPERATORS

int main()

{
// define complex numbers
CComplex TestComplex1, TestComplex2;
CComplex TestComplex3, TestComplex4;
// perform keyboard input of Complexi and Complex2
TestComplex1.GetComplex();
TestComplex2.GetComplex();

// add and subtract Complex1 and Complex2
TestComplex3 = TestComplexi.Add(TestComplex2);
TestComplex4 = TestComplexi1.Subtract(TestComplex2);

// display the result
TestComplex3.DisplayComplex();
TestComplex4.DisplayComplex();

return 0;

}
Replacing Add and Subtract member functions with overloaded operators

To use convenient notations for add and subtract operations, we have to
replace the Add and Subtract member functions with overloaded opera-
tors.

In the class declaration section (file ccomplex.h), we replace the lines

CComplex Add(CComplex);
CComplex Subtract(CComplex);

with the lines

CComplex operator+(CComplex);
CComplex operator-(CComplex);

In the class definition section (file ccomplex.cpp), we replace the Add and
Subtract functions with the following code:

CComplex CComplex::operator+(CComplex Complex1)

{
CComplex NewComplex;
NewComplex.rreal = rreal + Complexl.rreal;
NewComplex.iimage = iimage + Complex1.iimage;
return NewComplex;

}

CComplex CComplex::operator-(CComplex Complex1)
{

CHAPTER 4

STRUCTURES VERSUS CLASSES

CComplex NewComplex;
NewComplex.rreal = rreal - Complex1.rreal;
NewComplex.iimage = iimage - Complex1.iimage;

return NewComplex;

}

Interestingly, the function bodies remain the same. We didn't change the
actual code. We just changed the function names from Add to operator+
and from Subtract t0 operator-.

Testing the new operators

To test the + and - operators, we just replace the lines

TestComplex3 = TestComplexi1.Add(TestComplex2);
TestComplex4 = TestComplexi.Subtract(TestComplex2);

with the following lines:

TestComplex3 = TestComplex1 + TestComplex2;
TestComplex4 = TestComplex1 - TestComplex2;

Would you believe it? The program displays the same results.

Comments

Operator overloading is a very powerful feature of C++. Good programming
style assures code readability is dramatically increased with operator over-
loading. Creating new data types and implementing standard operations would
be incomplete without this feature.

To understand and remember the syntax of the overloading operator defini-
tion, you can start creating a member function to support the operation. In our
example we use the following syntax for the Add function declaration, defini-
tion, and call:

CComplex Add(CComplex);
CComplex CComplex::Add(CComplex Complext)
TestComplex3 = TestComplex1.Add(TestComplex2);

To change the Add function to the + operator, we have to just replace Add
with operator+ in the function declaration and definition:

CComplex operator+(CComplex);
CComplex CComplex::operator+(CComplex Complex1)

Function calls will be naturally replaced with

TestComplex3 = TestComplex1 + TestComplex2;

Similarly you can overload unary operators such as ++ or - -. The only
problem is in distinguishing between prefix and postfix notation. C++ conven-
tion defines the difference in operator declarations. For prefix notation, you can
use an approach similar to binary operator overloading. For example, the prefix
++ operator can be declared as

4.5

OVERLOAD RELATIONAL AND EQUALITY OPERATORS

CComplex operator++();

For postfix notation you should use the int keyword (surprise!) in the oper-
ator declaration. For example, postfix - - operator can be declared as

CComplex operator--(int);

COMPLEXITY
INTERMEDIATE

45 Howdol...
Overload relational and equality
operators?
Problem

For many classes that describe new data types, | want to specify an order for
the elements of a class. For example, | am always able to say whether a date is
greater than or less than another date. | want to use this order in my applica-
tions and | want to overload relational and equality operators (<, <=, >, >=, ==,
=1) to specify that order.

Technique

Operator overloading is a powerful feature of C++. If it is consistently applied
to a class, it can make the code much simpler and therefore more reliable. To
overload the operators, the appropriate functions have to be added to the class.
Every function will overload one operator, and together they will create the
complete set of relational and equality operators.

Steps

Creating a class

For this example, the DDate structure that was created in the beginning of
this chapter will be transferred into the Dbate class. To keep the example
simple, the code creates only one member function that sets up the date.
As usual, create the two files: the class declaration file (ddate.h) and the
class definition file (ddate.cpp).

// ddate.h
class DDate{

private:
int dday;
int mmonth;
int yyear;

CHAPTER 4

STRUCTURES VERSUS CLASSES

public:
/| constructor
DDate(void);
// destructor
~DDate(void);
// creates a new DDate object
// for the specified day, month, and year
void SetDate(int, int, int);

}s
// ddate.cpp

#include "ddate.h"

// constructor
DDate: :DDate()
{
}

// destructor
DDate: :~DDate()

{
}

// creates a new DDate object
// for the specified day, month, and year
void DDate::SetDate(int InDay, int InMonth, int InYear)

{
dday = InDay;
mmonth = InMonth;
yyear = InYear;

}

The class declaration has a private section with the dday, the mmonth, and
the yyear integer variables. This section is similar to the structure of
How-To 4.1. The public section contains the constructor, the destructor,
and the setDate member function. The SetDate function sets up the date
based on the day, month, and year arguments.

Overloading the relational and equality operators

The syntax of the declaration of overloaded operators declaration is
similar to the syntax of declaration of the overloaded operators in How-To
4.4. The syntax of the declaration is similar to the syntax of the declara-
tion of a function. The difference is that instead of a function name, the
keyword operator and the actual operator are used. For example, to
declare the overloaded > operator for the bDate class use

bool operator>(DDate);

4.5

OVERLOAD RELATIONAL AND EQUALITY OPERATORS

You must specify the return value of the functions, which is boo1l, because
the overloaded operators must have the same behavior as the regular rela-
tional and equality operators. The code will need to use the operators in
logical expressions and in statements such as

if (Datel > Date2) Destroy All();

Therefore, the class declaration will be the following:
// ddate.h

class DDate{

private:
int dday;
int mmonth;
int yyear;

public:
// constructor
DDate(void);
// destructor
~DDate(void);
// creates a new DDate object
// for the specified day, month, and year
void SetDate(int, int, int);
// overloaded operator >
bool operator>(DDate);
// overloaded operator >=
bool operator>=(DDate);
// overloaded operator <
bool operator<(DDate);
// overloaded operator <=
bool operator<=(DDate);
// overloaded operator ==
bool operator==(DDate);
// overloaded operator !=
bool operator!=(DDate);

};

The class definition will need quite trivial functions. The following code
covers three of the six operators (<, >, and ==). You can add the rest to
prove your knowledge of operator overloading.

// constructor and destructor
DDate: :DDate()

{}

DDate: :~DDate()

{}

// overloaded operator >
bool DDate::operator>(DDate InDDate)
{

if (yyear > InDDate.yyear) return true;

CHAPTER 4

STRUCTURES VERSUS CLASSES

if (yyear < InDDate.yyear) return false;

// years are equal
if (mmonth > InDDate.mmonth) return true;
if (mmonth < InDDate.mmonth) return false;

// months are equal
if (dday > InDDate.dday) return true;
return false;

}

// overloaded operator <

bool DDate::operator<(DDate InDDate)

{
if (yyear < InDDate.yyear) return true;
if (yyear > InDDate.yyear) return false;

/1 years are equal
if (mmonth < InDDate.mmonth) return true;
if (mmonth > InDDate.mmonth) return false;

// months are equal
if (dday < InDDate.dday) return true;
return false;

}

// overloaded operator ==
bool DDate::operator==(DDate InDDate)

{
if (yyear != InDDate.yyear) return false;
/| years are equal
if (mmonth != InDDate.mmonth) return false;
// months are equal
if (dday == InDDate.dday) return true;
return false;

}

// Readers can add the code to the functions below
bool DDate::operator<=(DDate InDDate)

{}
bool DDate::operator>=(DDate InDDate)
{}
bool DDate::operator!=(DDate InDDate)
{}

All functions defined in the preceding are similar to the other binary
functions. The major question to be answered is “What is the order of the
parameters in these functions?” For example, when the > (greater than)
operator is defined, is InDDate the first or the second parameter? If you
write

DDate Datel, Date2;
if (Date1l > Date2) do_something;

4.5

OVERLOAD RELATIONAL AND EQUALITY OPERATORS

will the 1nDDate parameter be replaced with the Date1 argument or the
Date2 argument?

The rule is simple: The parameter in any function that represents an over-
loaded binary operator is replaced with the second argument. The first
argument is considered to be an object of the defined class itself.
Therefore, in this example the InDDate parameter in the functions

bool DDate::operator>(DDate InDDate)
bool DDate::operator<(DDate InDDate)
bool DDate::operator==(DDate InDDate)

will be replaced with the Date2 argument for the statements

if (Datel > Date2) do_something;
if (Datel < Date2) do_something;
if (Date1 == Date2) do_something;

To prove it we have to create a simple test example.
Testing the overloaded operators

Create the following example to test the operator:

#include <iostream>
using namespace std;

#include "ddate.h"

int main()

{
DDate Datel1, Date2, Date3;
Datel.SetDate (19, 05, 1998);
Date2.SetDate (19, 05, 1998);
Date3.SetDate (19, 01, 1998);

cout << "The first date ";
if (Datel > Date2)
cout << "is ";
else
cout << "is not ";
cout << "greater than the second date" << endl;

cout << "The first date ";
if (Datel == Date2)
cout << "is ";
else
cout << "is not ";
cout << "equal to the second date" << endl;

cout << "The first date ";
if (Datel < Date3)

cout << "is ";
else

cout << "is not ";

4m CHAPTER 4
STRUCTURES VERSUS CLASSES

cout << "less than the third date" << endl;

return 0;

}

First of all, the code defines the Date1, Date2, and Date3 objects and
initializes them with the dates May 19, 1998, May 19, 1998, and January
19, 1998. Then the dates are compared using the overloaded operators.
The result should be

The first date in not greater than the second date

The first date is equal to the second date
The first date is not less than the third date

Comments

Operator overloading is a very powerful feature of C++. The idea behind it is to
make code more readable and intuitive. If overloaded operators don't serve this
idea, the results can be terrible. Let’s consider the following code:

int operator== (int InValue)

{
if (Invalue > 5) then return 5;
else return InValue;

In this example, the equality operator (==) was overloaded with a function
that returns the lesser of 5 and the function argument. If another programmer
wants to use this function to compare two variables, just imagine what the
result could be.

COMPLEXITY
INTERMEDIATE

4.6 Howdol...
Provide access to encapsulated
data to certain classes?

Problem

In How-To 4.4, we created an overloaded operator for adding two complex
numbers. | understand that if | want to use the + operator in the expressions
like

Complex1 + 2.3;
or

Complex1 + FloatNumber;

4.6

PROVIDE ACCESS TO ENCAPSULATED DATA TO CERTAIN CLASSES

where FloatNumber is a variable of a type float, | could define the overloaded
operator. | simply have to change the declaration to

CComplex operator+(float);

and the definition to
CComplex CComplex::operator+(float floatl)

{
CComplex NewComplex;
NewComplex.rreal = rreal + floatl;
NewComplex.iimage = iimage;
return NewComplex;

}

What should I do if | want to use expressions like
2.3 + Complex1;?

| can't overload this operator because | would have to simulate the function
CComplex CComplex::Add(float, CComplex)

and | have no idea how to do it. | would use
CComplex operator+(float, CComplex)

as a normal function but | need to have direct access to the private data of
ccomplex class. How do | use the private data without breaching the encapsula-
tion?

Technique

C++ introduced the notion of friend functions and friend classes. A friend func-
tion can access private data of a class without being a member function of the
class. In the following example, the FFriend function can access the private
data of the TestClass class.

Class TestClass
{

private:
public:

friend int FFriend(int);
1

int FFriend(int data)
{

}

145 puy

CHAPTER 4

STRUCTURES VERSUS CLASSES

We are going to create friend functions for our ccomplex class that will
support + and - operators in expressions like

2.3 + Complext
4.76 - Complexi;

Steps
Analyze the class and specify operations that cannot be represented by
member functions

This step is very important. The idea of friend functions has been
discussed a lot, and it has both good points and bad points. The biggest
problem pointed out by many writers is that the friend functions break
the wall that encapsulation creates. However, we can follow this rule:
Don't use friend functions if you don't have to. A limited usage of friend
functions increases the power of C++ and can significantly improve the
readability of the code.

In our example that created the cComplex class, we figured out a way of
supporting + and - operators for a few types of expressions. The only
type of arithmetic expression in which + and - can't be represented by
member functions is with a float variable as the first argument.

Therefore, we start creating functions to support expressions such as
2.3 + Complext;
Declaring a friend function
We already know that the function declarations should be
friend CComplex operator+(float, CComplex);

and
friend CComplex operator-(float, CComplex);
A friend function declaration can be placed in either the private or public

part of a class declaration. We prefer to put it in the public section to
show the accessibility of the function.

Even when declared within the class declaration, a friend function is not a
member function of this class.

Writing the function definition

The function definition is no different from the other functions. For our +
and - operations, the functions could be

// + operator support for the cases

4.6

PROVIDE ACCESS TO ENCAPSULATED DATA TO CERTAIN CLASSES

// 2.3 + Complexi
/1
CComplex operator+(float floati1, CComplex Complexi)

{

CComplex NewComplex;
NewComplex.rreal = float1 + Complex1.rreal;
NewComplex.iimage = Complexi.iimage;

return NewComplex;

}

// - operator support for the cases

// 2.3 - Complexi

/1

CComplex operator+(float float1, CComplex Complex1)

{

CComplex NewComplex;
NewComplex.rreal = float1 - Complexi.rreal;
NewComplex.iimage = Complex1.iimage;

return NewComplex;

}

A similar approach could be used if we wanted to add support for other
data types.

Creating a friend class

The two created functions just return CComplex values because they are
friend functions, not member functions of the class. In actuality, they are
not yet added to any class, which means the functions are accessible from
everywhere in the code. However, we are not going to use these functions
with all classes that we can create in the program. Therefore, it is a good
idea to combine them into one class.

class COperators

{
CComplex operator+(float float1, CComplex Complexi)

CComplex operator-(float floati, CComplex Complexi)
b

Also, you have to change the declarations to

friend CComplex COperators::operator+(float, CComplex);
friend CComplex COperators::operator-(float, CComplex);

specifying the scope of the functions. You can simply write

friend class COperators;

147

CHAPTER 4

STRUCTURES VERSUS CLASSES

and all functions in the coperators class will be declared as friends of
CComplex class.

Comments

Using friend functions in a program contradicts the idea of encapsulation. The
feature breaks the wall around the data encapsulated in a class. Therefore, don't
use friend functions unless they are absolutely necessary. One possible required
usage of friend functions is described in this How-To. Another very common
reason to use friend functions is to improve the syntax of a class and increase
the readability of the code.

COMPLEXITY

INTERMEDIATE

4.7 Howdo I...

Maintain global data in my
program?

Problem
When creating a large application, | need to have global data in the program.
For example, | often need to maintain the application parameters such as appli-
cation filename or application title. When creating business applications, | need
to create global data such as a company registration number or a company
address. How do | create global data using encapsulation?

Technique

The traditional approach in procedural programming assumes that many
program modules can share certain data. The data that can be accessed from
any module of a program used to be called global data. If we tried to combine
global data and object-oriented programming, we would have a program with
the structure shown in Figure 4.5.

To avoid this ugly implementation and make the program look more beau-
tiful, we can create classes that work as global data but in which the data is
encapsulated.

4.7

MAINTAIN GLOBAL DATA IN MY PROGRAM

FUNCTIONS
Global FUNCTIONS
Data

FUNCTIONS

Figure 4.5 Encapsulation and global data.

Steps

Determining the global data

The first step is to specify classes, encapsulate data, and specify member
functions. The data should be combined into logical groups according to
the objects that the program will need to operate.

In most cases you will find that no data is left. If the design was good, the
classes should cover all data. However, what do we do if there is data that
can't be a member of any class? For example, where should we store the
application title and application program filename? No class handles this
information, but a lot of classes need it. The application title works very
well as a caption for all message boxes or dialog boxes. The application
filename can be used to check whether the necessary files exist. Therefore,
this data can be considered global (belonging to the whole program).

If the class doesn't exist, create it!

We said that we could not figure out the class that would handle the
application title and filename. Therefore, let’s create it.

class Application

{

private:

char* AppTitle;
char* AppFilename;
public:
Application(void);
~Application(void);
char* GetAppTitle();
char* GetAppFilename;
};

CHAPTER 4

STRUCTURES VERSUS CLASSES

We declare AppTitle and AppFilename variables as char+. Therefore, we
have to reserve memory space and initialize them. The best place to do
this is within the class constructor. The destructor will free the space.

Because no module can change the application title and filename, we are
not providing functions to change the data. The only place that changes
the data is the constructor. However, we supply an ability to get the data
using GetAppTitle and GetAppFilename member functions.

Making one copy of the data

The implementation of the class is quite obvious, and we are not going to
concentrate on it. What is more interesting is the behavior of the class
instances. Suppose we've created two instances of the class:

Application Appi;
Application App2;

This looks strange but just imagine that the two instances belong to two
different parts of the program. Whatever we do, the two copies of the
class in the memory will be created. It is not a big deal in our case but
creates a problem if the class allows the data to be changed.

To make the data behave like global data (one shared copy), we have to
change the data member declarations:

class Application

{

private:

static char* AppTitle;
static char* AppFilename;
public:
Application(void);
~Application(void);

char* GetAppTitle();
char* GetAppFilename;

b

Now the data is declared as static char*. The static keyword makes
the data exist in only one copy, no matter how many instances of the class
exist. No instance of the class needs to be declared in order for the static
data to exist.

Comments

Using global data in object-oriented programming requires that a class be
created to handle this data. In this case, the data remains encapsulated. Usually
we can create a few classes that handle groups of global data. For example, we
can create an Application class to store the application filename and applica-
tion title, or a company class to keep company information such as registration
number and address.

e 151 p
KNOW WHEN TO USE STRUCTURES AND WHEN TO USE CLASSES

If we can't define sets of global data, we can create one class named
Environment (or any other name) and encapsulate all global data in it.

COMPLEXITY

INTERMEDIATE

4.8 Howdol...
Know when | should use
structures and when | should
use classes?

Problem

| want to work with a linked list. When creating the linked list implementation
in C, I normally use structures. Should | use the same technique in C++ or do |
have to change all structures to classes?

Technique

To show the technique of using classes rather than structures, we are going to
create the implementation of linked lists in C++.

Steps

Determining the linked list class

A linked list is an aggregated data type. Elements of a linked list can be of
any type. In this example, we'll consider only integer elements. A linked
list starts with a pointer to the first element. If the linked list is empty, the
first element is NULL as shown in Figure 4.6.

First: NULL

Figure 4.6 An empty linked list.

Elements of a linked list consist of data and a pointer to the next element
in the list. The last element consists of its data and NULL pointer. An
example of a linked list is shown in Figure 4.7.

CHAPTER 4

STRUCTURES VERSUS CLASSES

First. ——>| DATAL DATA3
Pointerl \ Pointer3 \
DATA2 DATA4
Pointer2 NULL

Figure 4.7 A linked list.

A linked list as a data type needs the following operations: add, remove,
and insert. In this example, we are going to implement only the add
operation. The operation allows you to add a new element to the begin-
ning of the list.

The following is the class declaration:
// file linkedli.h

#include <iostream.h>

// list elements
struct 1llink

{
int elem;
1link* nextelem;

b

// linked list
class linkedlist

{

private:
11link* firstelem;

public:
linkedlist(void);
~linkedlist(void);
void AddElement (int eleml);
void DisplayList(void);

}s

Defining and testing the class

The implementation of the class needs a constructor, an operation to add
new elements, and an operation to display the list.

// file linkedli.cpp

#include "linkedli.h"

e 153 p
KNOW WHEN TO USE STRUCTURES AND WHEN TO USE CLASSES

// constructor
linkedlist::linkedlist()
{

firstelem=NULL;

}

// destructor
linkedlist::~linkedlist(void)
{
// here should be a code
// to free memory

}

// add new element
void linkedlist::AddElement(int elem1)

{
11link* newlink= new 1llink;
newlink->elem= elemi;
newlink->nextelem= firstelem;
firstelem= newlink;

}

// Display list elements one by one
void linkedlist::DisplaylList()

{
1link* currentelem= firstelem;
while (currentelem!= NULL)
{
cout << currentelem->elem << " - ";
currentelem= currentelem->nextelem;
}
cout << "END" << endl;
}

To test the implementation, let's write a program that adds a few elements
to the list and then displays the list on the screen:

// file listtest.cpp

#include "linkedli.h"

int main()

{
linkedlist TestList;
TestList.AddElement(5);
TestList.AddElement (54);
TestList.AddElement(3);
TestList.AddElement(25);
TestList.DisplayList();

return 0;

CHAPTER 4

STRUCTURES VERSUS CLASSES

The program will display

25 - 3 - 54 -5 - END

Comments

Now we can discuss details of the linked list implementation and the difference
in using classes and structures.

We used a C++ structure to create a single element:

struct 1llink

{

};

int elem;
1link* nextelem;

The linked list element consists of two parts of different data types.
Therefore, it was very convenient to combine them using the struct keyword.
Remember that we can't use arrays for creating a data aggregate of pieces of
different data types. The first structure member handles the data (sometimes
called satellite data). In our example, the data has an integer value but linked
lists can maintain any type of data, for instance, pointer to image structures.

The second structure member provides a pointer to the next list element.
Note that we use a kind of recursion because the pointer points to an element
of the 11ink type that is defined by the structure. This is an important feature
that makes C++ structures really powerful.

So far we have dealt with data and the data describes a linked list element.
Do we need to extend it to a class? The answer is no; there is no need to add
operations. Elements don't need operations on themselves. There is no such
thing as incrementing a list element or the addition of two elements. Even
display functions should display the whole list rather than a separate element.

Because we want to use a common approach, we will leave the structure
without moving it to a class. This is mostly a question of programming style.
For historical reasons, we deal with structures if we deal with pure data and if
there is no need of operations on this data.

Now we can consider the linked list itself. No doubt, it should be a class for
several reasons.

First, we can encapsulate all data members. Fortunately we don't need many
of those. The important thing is that we have to define operations with this
linked list. There are list elements involved in the operations; however, the
elements are hidden from external objects.

Creating a linked list involves quite a bit of logic. In our design we decided
that an empty list was just a NULL. It means that we reserve the space for the
list on-the-fly while adding the elements. Therefore (if we were writing a
real program), we have to destroy the memory items when we don’t need
the elements.

e 155 p
KNOW WHEN TO USE STRUCTURES AND WHEN TO USE CLASSES

These operations need a constructor and a destructor that are class
member functions.

The last class elements we have to specify are the functions AddElement and
DisplayList. The functions provide a necessary interface for the encapsulated
data. We definitely need more functions and their creation is left as a good
assignment for the reader.

— CHAPTER o5
COMMON MISTAKES

MADE WITH CLASSES

COMMON MISTAKES
MADE WITH CLASSES

How do I...

5.1

5.2
53
54

5.5

5.6
5.7
5.8

5.9

Know when to take an object-oriented approach or
a procedural approach?

Use and access a class’s data members?
Use the scope resolution operator?

Use dot notation to access the member functions
of an object?

Know which constructor to use when there are
several to choose from?

Implement function overloading?
Correctly make use of inheritance?

Pass parameters back through the C++ inheritance
mechanism to parent classes?

Distinguish between virtual classes and nonvirtual
classes? How do | know when to use virtual classes
and what does the word virtual mean in C++?

After a programmer progresses to the levels of object-oriented programming
(OOP), whether new to programming or coming from a non-OOP language,

CHAPTER 5

5.1

5.2

5.3

54

COMMON MISTAKES MADE WITH CLASSES

she immediately discovers common mistakes made over and over again by
many programmers. Often, it is because C++ is such a large language to learn
that the underlying basics of OOP are left out. It is these basic ideas that trap
beginning OOP programmers in the early stages and leave them scratching their
heads. Often, they are left wondering what the error message actually means
and also whether there is anyone around who understands it. This chapter is
designed to help you understand the basic ideas of OOP and covers some of the
more common mistakes made by beginning C++ programmers.

Know When to Take an Object-Oriented Approach
or a Procedural Approach

When writing a program using an object-oriented language, many new
programmers don't know whether to write the program using objects or in a
procedural fashion. Often, many think that because C++ is object-oriented, all
programs should be written using objects. That is not true and often programs
don't need to be written in an object style. It is important to learn when to use
objects and when not to.

Use and Access a Class’s Data Members

A class can have data members (variables). It is these members that store the
data internally to their class. This method encapsulates the data inside the class
in a tightly bound, single entity. When an instance of a class is created, these
data members are also created with it and given their own space in memory.
For each instance of the class, a new set of data members is created. However,
because they are stored within a class, they only exist inside of an object at
runtime and can only be accessed via that object. How are values assigned to
them?

Use the Scope Resolution Operator

The scope resolution operator has two main functions. First, it can be used in a
program to access a global variable that has the same name as a local variable.
By placing the scope resolution operator in front of the variable, you can
directly control which variable the compiler uses. The second use is within
object-oriented programs. The scope resolution operator is used to identify
which class a particular function is a member of. This allows classes to share
function names but keep each one separate in the program.

Use Dot Notation to Access the Member Functions
of an Object

In object-oriented programs, the use of the dot operator is vital to access
member functions. Often new C++ programmers either forget or don’t know
where or how to use the operator. The use of the dot is often confused when
calling standard functions mixed with member functions. It is the member
functions that require the dot and not the standard functions.

CHAPTER 5

5.5

5.6

5.7

5.8

5.9

COMMON MISTAKES MADE WITH CLASSES

Know Which Constructor to Use When There Are
Several to Choose From

Classes often use more than one constructor to gather data. Because each
constructor has a different signature, it is important to know how to access each
one. To understand this, function overloading should be addressed as the
constructors each have the same name but will have different parameters. By
using multiple constructors, the programmer can increase the usefulness of the
class because he can control the amount of data passed to the class.

Implement Function Overloading

In programs, you quite often need a function that can perform several different
tasks but use the same interface. Overloaded functions are the simple solution.
For example, you might have several functions using the same name but
handling different data types. The programmer would then have one common
interface but be able to use mixed data types.

Correctly Make Use of Inheritance

Inheritance is a very useful and powerful tool in any object-oriented program-
ming language. It gives the programmer access to pre-written classes that
perform specific jobs. By utilizing inheritance, the programmer can rapidly
create programs knowing there will be minimal debugging time. This is because
any classes inherited by the program will (in theory) be pre-tested. The main
problem people find when working with inheritance is simply how to use it in
the first place.

Pass Parameters Back Through the C++ Inheritance
Mechanism to Parent Classes

Beginning C++ programmers find writing inherited constructors very difficult. It
can be very confusing to know which parameters are used in the derived class
and which ones to pass on to the base class. For a hierarchical structure to
work, there must be a coherent structure wherein all parameters have a destina-
tion.

Distinguish Between Virtual Classes and Nonvirtual
Classes? How Do | Know When to Use Virtual
Classes and What Does the Word Virtual Mean

in C++?

When building up a hierarchical inheritance network, it is difficult to know
when to use virtual and nonvirtual classes. The difference is in the way the
classes are inherited. Nonvirtual inheritance means the derived class makes a
copy of the base class. Inheriting a virtual class means that only a reference to
the base class is used. There is no actual copy, only an “image.”

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

COMPLEXITY

BEGINNING

51 Howdol...
Know when to take an object-
oriented approach or a procedural
approach?

Problem
Both OOP- and procedural-style programs seem to achieve the same results as
far as input and output are concerned. In addition, to the beginning OOP
programmer, object-oriented programming might seem long-winded and
confusing whereas procedural programming might seem direct and concise.

Technique
To point out the differences, you will attempt to solve the following problem:

Write a program that will accept two letters as input, compare these two letters,
and then determine whether these two letters are the same or not. A message stating
the result must be displayed to the screen.

Steps
First of all, you will take a look at a “normal” procedural solution to the
problem. More than one way to lay out such a program exists, but the first issue
is that the main program contains the variables first, second, and tested.
These variables are passed by value to and from the functions in which their
copies are manipulated. The variables belong to the main program and not the
functions. Control of the entire program is orchestrated from the main program
and control is maintained there at all times.

The main program asks the function GetLetter () to return a letter. That
letter is then placed into the variable first, which exists only within
main (see Figure 5.1):

first = GetLetter();

N 163 py
KNOW WHEN TO TAKE OBJECT-ORIENTED OR PROCEDURAL APPROACH

- GetLetter <
1
1
1
first=GetLetter(); 1
: Equal
1
1
1
second=GetLetter(); 1
1
1 Result
1
1
1
tested=Equal(first,second); :
1
: main
1
Result(tested); :
1
: tested
1
1
1 second
1
! .
- = > first

Figure 5.1 main calls GetLetter, which returns a
value to first.

The same thing happens to obtain a value for second (See Figure 5.2):

second = GetLetter();

In order to determine the relationship between first and second, they
are handed to the function Equal() and the outcome of that comparison
is returned to the main program where it is stored in the variable tested
(see Figure 5.3):

tested = Equal(first,second);

Finally, the value contained in tested is handed to the function Result()
where it is displayed to the screen (see Figure 5.4):
Result(tested);

Now compare the “normal” solution with the object-oriented approach. The
difference is subtle but very important.

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

- GetLetter <
1
1
1
first=GetLetter(); 1
1
f Equal
1
1
1
second=GetLetter(); :
1 Result
1
1
1
tested=Equal(first,second); :
1
: main
1
Result(tested); ,
1
1
1 tested
1
1
- = > second
first

Figure 5.2 main calls GetLetter again, which returns
a value to second.

GetLetter
first=GetLetter();
Malale Equal < ="
1 1 1
1 1 1
1 1 1
second=GetLetter(); 1 [
! [
' Result [
! [
1 1 1
! [
tested=Equal(first,second); : : :
1 1 1
, main -
1 1 1
Result(tested); : : :
1 1 1
1 1 1
-=-> tested o
1 1
1 1
second @ |===== 1
1
. 1
first ===

Figure 5.3 The function Equal is called from main and the
variables first and second are copied into the function.

N 165 p
KNOW WHEN TO TAKE OBJECT-ORIENTED OR PROCEDURAL APPROACH

GetLetter
first=GetLetter();
Equal
second=GetLetter();
Result < =
1
1
1
tested=Equal(first,second); 1
1
1
main !
1
1
Result(tested); 1
1
1
tested = |----- !
second
first

Figure 5.4 The function Result is called from main
and the variable tested is copied into the function.

No variables are stored in the main program. From within the main
program, control is given to the pilot object and its GetLetter member
function is called into life. The user input of two letters is stored inter-
nally within the pilot object. After the pilot object has done its work, it
returns control back to the main program. No variables are exchanged as
in “normal” programming (see Figure 5.5):

pilot.GetLetter();

|-pilot.GetLetter();

pilot.Equal();

main()

pilot.Result();

Figure 5.5 Control is given to the pilot object by main, and the
GetLetter member function is activated.

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

Control is then passed again to the pilot object where the Equal member
function acts upon the variables stored within itself. After the actions of
Equal are completed, control is passed back to main (see Figure 5.6):

pilot.Equal();

pilot.GetLetter();

main()

—I-pilot.EquaI(); _ >

pilot.Result();

Figure 5.6 Control is given to the pilot object by main, and the
Equal member function is activated.

Again, control is passed to the pilot object where the Result member
function acts upon the variables stored within the object. When the
actions of Result are completed, control is passed back to main (see
Figure 5.7):

pilot.Result();

pilot.GetLetter();

main()

pilot.Equal();

pilot.Result();

Figure 5.7 Control is given to the pilot object by main, and the
Result member function is activated.

N 167
KNOW WHEN TO TAKE OBJECT-ORIENTED OR PROCEDURAL APPROACH

How It Works

In the procedural model, variables are stored within the main body of the
program and passed to the functions. The functions are tools that are called to
act upon the data. Control always remains with the main program and the data
and member functions are distinctly separate items. Here is the procedural
program in full:

// None OOP version
#include <iostream.h>

bool Equal(char alpha, char beta);
char GetLetter(void);
void Result(bool b);

main()

{
char first;
char second;
bool tested;

first = GetLetter();

second = GetLetter();

tested = Equal(first,second);
Result (tested);

return(0);

}
bool Equal(char alpha, char beta)

if (alpha == beta)
return(true);

else
return(false);
}
char GetLetter(void)
{
char letter;
cout << "Enter the letter : ";
cin >> letter;
return(letter);
}

void Result(bool b)
{
if (b == true)
cout << "Letters are the same";
else
cout << "Letters are not the same";
cout << endl << endl;

m CHAPTER 5
COMMON MISTAKES MADE WITH CLASSES

In the object-oriented model, no variables are stored within the main
program. Objects have their own variables and member functions that act upon
those variables specifically. An object is a mini-program in its own right and the
main program passes control to it. After control is given to the object, it acts
upon its own internal variables using its own member functions. Here is the
program:

// OOP version
#include <iostream.h>

class LetterTest {
private:
char alpha;
char beta;
bool gamma;

public:
void Equal(void);
void GetLetter(void);
void Result(void);

}s
void LetterTest::Equal(void)
{
if (alpha == beta)
gamma = true;
else
gamma = false;
}
void LetterTest::GetLetter(void)
{
cout << "Enter the first letter : ";
cin >> alpha;
cout << "Enter the second letter : ";
cin >> beta;
}
void LetterTest::Result(void)
{
if (gamma == true)
cout << "Letters are the same";
else
cout << "Letters are not the same";
cout << endl << endl;
}
main()
{

LetterTest pilot;

pilot.GetLetter();
pilot.Equal();
pilot.Result();
return(0);

5.2

USE AND ACCESS A CLASS’S DATA MEMBERS

Comments

There are no hard and fast rules about when you should use OOP and “normal”
programming styles. You can achieve the same user interaction with either.
However, OOP is by far the more powerful of the two styles, especially in
larger, more complicated programs. For example, writing GUI programs is a
major undertaking in traditional linear programming, but is much simpler with
OOP. The OOP feature of inheritance makes the life of the programmer far
easier and rapid application development (RAD) is achievable. Object-oriented
programming is as much a way of thinking as a programming style. After you
get into that mindset, you might wonder how you ever lived without OOP.

COMPLEXITY

5.2

BEGINNING
How do I...

Use and access a class’s data
members?

Problem

Many beginning C++ programmers are confused by the issue of public and
private variables. A common question is “How do | access a data member
within a class?” Quite often, a beginner simply defines a global (global to the
whole program) variable that she can then use anywhere. Obviously, this is not
the optimal solution because after you start using global variables, they are not
then tied to any particular class. In the end, your program ends up redeclaring
several variables that exist both in the class and the main program. In essence,
this misses the point of encapsulation (and therefore object-oriented program-
ming) altogether.

Technique

Data members are used within a class to hold internal data that is needed by
that classs member functions. It is a basic principle of object-oriented program-
ming that data members can be accessed only by an objects own member func-
tions. For this reason, a class's data members are often declared as private.

The idea of keeping the data members private to the class is the standard
method of programming because it takes away the need of the programmer to
know how things inside of the class are stored. All the user has to know is how
to correctly create an instance of the class to use the class to perform its
required job. A class is an abstract notion that states the relationship between
member variables that hold data and are hidden within the class and the
member functions that manipulate that hidden data. The specification of this

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

relationship needs to be written only once. When a programmer creates an
instance of a class, computer memory is allocated to house the member vari-
ables and the member functions. This physical presence of the class is called an
object; it is said to be concrete. The act of creating an instance of a class can be
repeated many times; therefore, many concrete objects can be created from a
single class.

Steps
During the design of a class, the programmer should plan what internal data
needs to be stored. The programmer then needs to decide whether the data is
to be private to the class or public to the program by remembering that the data
members should be invisible to the user. As an example, you will design a
program that creates a class that makes use of global variables. You will then
modify the class to use private data members. Hopefully, you will see the
difference.

Open up your C++ development environment (or a text editor) and create
a new C++ source file called 1ist5.21.cpp.

Add the following class to the editor.
// Usage of Global Variables.
#include <iostream.h>
float Area=0;

int Height=0;
int Length=0;

class Test
{
public:
void CalcArea();
void ShowArea();
}s

Immediately, you can see that the variables (data members) are not where
they are supposed to be. In fact, they are declared as global variables.

Add the member function definitions:

void Test::CalcArea()

{
Area += Height*Length; //Find Area

}

void Test::ShowArea()

{

cout << "The Area is " << Area << endl;

}

5.2

USE AND ACCESS A CLASS’S DATA MEMBERS

Here the member functions are manipulating the variables Area, Height,
and Length, but these variables are not declared anywhere in the class.
This will cause problems later.

Finally, add the main section of the program.

void main(void)

{
cout << "Enter a Height "; //Gather input
cin >> Height;
cout << "Enter a Length
cin >> Length;

Test Square; //Create instance
Square.CalcArea(); //Call Member Functions
Square.ShowArea();

cout << "Enter a Height "; //Gather input
cin >> Height;
cout << "Enter a Length "
cin >> Length;

Test Box; //Create Another Instance
Height++; //Main has altered a value!!
Box.CalcArea();

Box.ShowArea() ;

}

Both main and the class can see and use those variables. The key is that
both can alter them. Because two instances of the class are using the same
variables, the data might not be up-to-date. In fact, the program has been
designed to show this exact thing. In the calculation for Area, you are
using +=, which adds to a value. Because Area is being used elsewhere, it
might not be initialized to @. Therefore, the resulting answer will be
incorrect.

Figure 5.8 shows what’s going on...

Area Height Length

Class Test
Instance 2

Class Test
Instance 1

Figure 5.8 Using global variables.

The figure shows that all parts of the program can see and use the vari-
ables. If Instance 1 alters them, they are altered for Instance 2. Therefore,
the result for Instance 2 will be incorrect.

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

To correct the problem, you must store the data as member variables of

the Test class and pass values to them via a constructor.

Figure 5.9 shows the required design.

Class Test
Instance 2

Class Test
Instance 1

Figure 5.9 Correct scope of variables.

In this example, the class has three member variables. All the user needs
to do is use a constructor to pass in values to Length and Height. The
member functions then perform their duties and calculate a resulting
area. By using private data members, the user only needs to know that
the class requires two inputs. From there, the class performs the calcula-
tion internally. Because the data members are private to their own
instance, they are totally separate. This means the data has not been
altered before the member functions use it; therefore, every instance will
produce the correct answer.

This sample program fragment uses the correct object-oriented method.
First of all, look at the class declaration.

#include <iostream.h>

class Test
{
private:
float Area;
int Height; //Private DataMembers
int Length;
public:
void CalcArea();
void ShowArea();
Test(int H, int L); //Constructor
b

Include the member variables in the private section of the class. By doing
this, only the member functions can utilize them.

Next, add the member function definitions as shown in the next program
fragment.

void Test::CalcArea()

{

5.2

USE AND ACCESS A CLASS’S DATA MEMBERS

Area = Height*Length; //Find Area
}
void Test::ShowArea()
{
cout << "The Area is " << Area << endl;
}
Test::Test(int H, int L)
{
Height = H; //Pass parameters
Length = L;
}

The constructor is used to pass information from the main program
across the class boundary to the internal private data members.

IEM Finally, add the main program section that creates two instances of the
class and utilizes the two member functions each time.

How It Works

// Correct

One of the most common problems encountered by beginning C++ program-
mers is that they end up using far too many variables. This problem is trans-
ferred to object-oriented programs, and the beginner immediately finds that he
has variables in the main program and the same variables in the class.
Obviously, the two sets of variables are totally different because they have
different scope. The programmer finds the only solution is to create public or
global variables that can be accessed from anywhere within the program. The
whole idea of individual, separate class modules is thrown out the window and
the user is virtually back to a linear style of programming.

The correct way to encapsulate data is to use private data members in the
class and utilize a constructor to pass by value local variables from main into
the class. The member functions can then see and use the data as it is now in
scope. In addition to passing data to an object at instantiation, it is also possible
to read data into an object using the iostream member function get () and to
write data out using the member function set ().

The following is a full program listing of the correct method.

use of Private Data Members

#include <iostream.h>

class Test {
private:
float Area;
int Height; //Private DataMembers
int Length;
public:

void CalcArea();
void ShowArea();

CHAPTER 5

COMMON MISTAKES MADE WITH

Test(int H, int L); //Constructor
}s
void Test::CalcArea()
{
Area = Height*Length; //Find Area
}
void Test::ShowArea()
{
cout << "The Area is " << Area << endl;
}
Test::Test(int H, int L)
{
Height = H; //Pass parameters
Length = L;
}

void main(void)

{
int Height,Length;

cout << "Enter a Height "; //Gather input
cin >> Height;

cout << "Enter a Length ";

cin >> Length;

Test Square(Height,Length); //Create instance
Square.CalcArea(); //Call Member Functions
Square.ShowArea();

cout << "Enter a Height "; //Gather input
cin >> Height;

cout << "Enter a Length ";

cin >> Length;

Test Box(Height,Length); //Create Another Instance

Box.CalcArea();
Box.ShowArea();

Comments

CLASSES

If you are using global variables, the class becomes useless. The idea of good
class design is that each instance of a class is its own single unique entity. Each
instance has its own data and member functions to manipulate that data. By
using global variables, each instance of the class will be overwritten and use
only one piece of data. Therefore, the information used is not necessarily the
correct data because another instance of the class might have altered it.

5 -
USE THE SCOPE RESOLUTION OPERATOR

COMPLEXITY

BEGINNING

5.3 Howdol...
Use the scope resolution
operator?

Problem

Object-oriented programming is very different from standard linear program-
ming. The use of objects requires the programmer to use member functions.
Each class will have its own member functions. In standard C++ programs, the
programmer uses a prototype to declare a function and then writes a function
definition to accompany it. That function is public to the whole program.
However, member functions are different. They are functions that belong to a
class, making them separate from the rest of the program. In order to use these
functions, the programmer must use the scope resolution operator to tell the
compiler that this function definition belongs to a particular class. A major
problem for programmers new to OOP is knowing where and when to use the
scope resolution operator.

Technique

The scope resolution operator (::) can be used in two distinct ways. Both tech-
nigues relate to using global members or variables. For example, you might
have a program that uses a global variable named Length. However, if you
declare a new variable also named Length in a local fashion, you have to use
the scope resolution operator to access the global variable.

In relation to classes, the scope resolution operator is used to tie a function
to a certain class. For example, you might have two functions called Area with
each existing within a different class. You use the scope resolution operator
during the definition of each function to specify which class it belongs to.
Therefore, Alpha: :Area() and Beta: :Area() are two different functions
located in two different classes.

Steps

You will first examine the use of the scope resolution operator with global
variables.

You can tell the compiler to use a global variable rather than a local vari-
able by using the scope resolution operator.

The following example has two variables called Length. One is global and
the second is local to function main.

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

// The Scope Resolution Operator
#include <iostream.h>
int Length = 789; //Global Variable

void main()

{
int Length = 123; //Local Variable
cout << ::Length; //Output Global using ::
cout << endl;
cout << Length; //Output Local;
}

When you run the program both values are output to the screen. For the
first value, you have told the compiler to output the global variable by
prefixing the variable name with the scope resolution operator. For the
second value, you have simply used the variable name. Therefore, the
compiler refers back to the local variable Length within the main
program.

This example focuses on the use of the scope resolution operator with
member functions.

During the construction of a member function definition, you have to
specify in the header which class this function belongs to. To achieve this,
you must use the scope resolution operator. This tells the compiler the
name of the class associated with the function. By doing this, you can
have several functions with the same name but attached to different
classes.

The following program shows how you can have multiple functions with
the same signature. However, they are actually methods of unique classes.

This program has two classes: Alpha and Beta. Alpha takes two integers,
adds them together, and then shows the result.

Beta is similar to Alpha except that Beta multiplies the two integers
together.

Create the following class hamed Alpha.

//The Scope Resolution Operator

#include <iostream.h>

5.3

USE THE SCOPE RESOLUTION OPERATOR

class Alpha{
private:
int Vvali,val2;
int total;
public:
void Calc();
void Show();
Alpha(int x,int y);
b

Now add another class named Beta.

class Beta{
private:
int Valt,val2;
int total;
public:
void Calc();
void Show();
Beta(int x,int y);
b

The classes are similar in that both have private member variables named
vali, val2, and total. They also have the same member functions (Calc
and show). The constructors accept two integer values as input.

Now add the function definitions for Alpha’s member functions. At this
point, the scope resolution operator is used.

void Alpha::Calc()

{
total = 0;
total = vall + Val2;
}
void Alpha: :Show()
{
cout << "The total is " << total << endl;
}
Alpha::Alpha(int x, int y)
{
Vall = x;
Val2 = vy;
}

Note how the scope resolution operator works. You specify the name of
the class to which the member function belongs. Next, insert the scope
resolution operator, and then insert the name of the function (see Figure
5.10).

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

Alpha::Calc()

class member

identifier function

scope resolution
operator

Figure 5.10 The scope resolution
operator.

I Now, insert the definitions for the Beta member functions.

void Beta::Calc()

{
total = 0;
total = Vall * Val2;
}
void Beta::Show()
{
cout << "The Product is " << total << endl;
}
Beta::Beta(int x, int y)
{
Vall = x;
Val2 = vy;
}

As you can see, the definitions are virtually identical but are differentiated
by the use of the scope resolution operator to relate them to a unique
class.

Finally, you must add a main function that will call instances of the two
classes using the member functions.

void main()

{

int Numi,Num2;

cout << "Enter Number 1 ";
cin >> Numi;
cout << "Enter Number 2 ";
cin >> Num2;

Alpha First(Numi,Num2);
First.Calc();
First.Show();

Beta Second(Numi,Num2);
Second.Calc();
Second.Show() ;

5.3

USE THE SCOPE RESOLUTION OPERATOR

This function has two local variables named Num1 and Num2. They are
passed to the constructors of the two classes when the instance is created.
The member functions are then used to manipulate the data.

How It Works

The private member variables and public member functions are declared in the
class declarations. The member functions become methods of the class they
belong to.

In the definitions of the member functions, you use the scope resolution
operator to specify the class to which the member function belongs. By doing
this, you can have member functions that have the same names but are, in fact,
individual methods of their class.

In the preceding program, you created an instance of Alpha named First.
You then used dot notation to invoke the member functions of Alpha. Note that
only the member functions of class Alpha are being used at this point. In reality,
the member functions for Beta don't exist yet; they are not created until the
class is instantiated.

Finally, an instance of class Beta is created and its member functions are
used to perform another calculation using the same two pieces of data.

//The Scope Resolution Operator
#include <iostream.h>

class Alpha{

private:
int vali,val2;
int total;

public:
void Calc();
void Show();
Alpha(int x,int y);

b
class Beta{
private:
int Vvali,val2;
int total;
public:
void Calc();

void Show();
Beta(int x,int y);

b
void Alpha::Calc()
{
total = 0;
total = valtl + Val2;
}

void Alpha: :Show()

—— mE

CHAPTER 5

COMMON MISTAKES MADE WITH

{
cout << "The total is " << total << endl;
}
Alpha::Alpha(int x, int y)
{
Vall = x;
Val2 = vy;
}
void Beta::Calc()
{
total = 0;
total = Vall * Val2;
}

void Beta::Show()
{

cout << "The product is " << total << endl;
QQ again, change sum to "product". 9/28 DM
}

Beta::Beta(int x, int y)
{
Vali
Val2

X3
y;

}

void main()

{

int Numi,Num2;

cout << "Enter Number 1 ";
cin >> Numi;
cout << "Enter Number 2 ";
cin >> Num2;

Alpha First(Numi,Num2);
First.Calc();
First.Show();

Beta Second(Numi,Num2);

Second.Calc();
Second.Show();

Comments

In this example, you created two classes with member functions using the same
name. This is the easiest way to show how to use the scope resolution operator
in order to distinguish the member functions from each other. In reality, you
wouldn't create two classes like this (one to add two numbers together and
another to multiply them). The easiest way would be to create one member

function for each different calculation.

CLASSES

5.4

USE DOT NOTATION TO ACCESS AN OBJECT’S MEMBER FUNCTIONS

COMPLEXITY

181 py

BEGINNING

54 Howdol...
Use dot notation to access the
member functions of an object?

Problem

Anyone used to working with traditional-style programs, whether those
programs are linear or procedural, finds it potentially confusing to work with
objects. An object is a mini-program in its own right and carries its own
member variables and functions. Member functions are accessed with dot nota-
tion, whereas no dot is used when constructing the object. Why is this so?

Technique

The constructor is used to create an instance of the class and give that instance
a unique name. Dot notation is not used to achieve this action. This has the
effect of allocating enough computer memory to hold all the member variables
and the code for the member functions of the class. After it has been created, or
instantiated, that memory block is known as an object. Figure 5.11 shows the
constructor in action.

Gather
Calc
Greatest test;
l Show
Sets up this
memory block
starting here result;
second;
first;
>
>

Figure 5.11 The constructor allocates
memory and attaches a unique name
to an object.

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

After an object is created, you need to access individual member functions
within it. This is done using what is known as dot notation. Dot notation tells
the compiler which member function is being called. At machine level, the
member function name is a symbolic reference that specifies how far the
member function code is removed from the start of the object memory block.
This is shown in Figures 5.12 and 5.13.

Gather

this far from
the start
T Calc

test.Gather();

note the
Show

result;

second;

test
starts
here

first;

Figure 5.12 The member function Gather is
removed by this number of bytes from the
starting base address of the object test.

A 183 py
USE DOT NOTATION TO ACCESS AN OBJECT’S MEMBER FUNCTIONS

Gather
Calc
Show
this far from
the start result;
* second;
test.srowo; first;

Figure 5.13 The member function Show is
removed by this number of bytes from the
starting base address of the object test.

Steps
In this example, the actions of constructing an object and invoking its member
functions are done in the main body of the program.

The first step is to create the object with this line of code. Do not use dot
notation to create an object. This line is used to allocate computer
memory.

Greatest test;
Then invoke the Gather () member function using dot notation.

Invoke the calc () member function, again using dot notation to perform
an action.

test.Calc();

The show() member function is invoked to display the data member
result to the screen. Like all member functions, it is invoked using dot
notation to separate the object name and the required member function.

test.Show();

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

How It Works

To get information into an object, you must state the name of the object and the
member function within that object that you are referring to.

test.Gather();

First, set up the class definition. The class is called Greatest and has the
following capabilities:

Gathering two integer values and storing these values in the private data
members first and second.

Calculating which of these two integer values is greater and storing the
greater value in the private data member result.

Showing result to the screen.

The constructor initializes result to @ as an object is created and issues
the comfort message New test object created just to prove that the
constructor has done its job.

The destructor issues the comfort message Test object destroyed to
prove that the object no longer exists.

The main() function contains a while loop that continually creates a new
object called test using the class constructor. The user is invited to enter two
integer values using the member function Gather (). Those two values are
compared using the member function calc () and the greater value is stored in
the data member result. The member function Show() simply displays the
result to the screen.

There is an valid point to be made here. Note that you have a definition of
the destructor ~Greatest. That destructor is never called into action, but you
will see its message on the screen every time the while loop does its job.
Destructors are automatically invoked every time an object goes out of scope,
and your test object goes out of scope at the end of the while loop.

Here is the full program listing.
// Accessing member functions using dot notation.

#include <iostream.h>

class Greatest {
private:
int first;
int second;
int result;
public:
Greatest();
~Greatest();
void Gather(void);

5.4

USE DOT NOTATION TO ACCESS AN OBJECT’S MEMBER FUNCTIONS

void Calc(void);
void Show(void);

}s

Greatest::Greatest()
{

result = 0;

cout << "New test object created" << endl << endl;
}
Greatest::~Greatest()
{

cout << "Test object destroyed" << endl << endl;
}

void Greatest::Gather(void)

{
cout << "Enter the first number : ";
cin >> first;
cout << "Enter the second number : ";
cin >> second;
}
void Greatest::Calc(void)
{
if (first > second)
result = first;
else
result = second;
}
void Greatest::Show(void)
{
cout << "The greatest number is : " << result
<< endl << endl;
}
main()
{
char again;
while(1)
{

Greatest test;

test.Gather();

test.Calc();

test.Show();

cout << "Again : ";

cin >> again;

if (again != 'y')
break;

return(0);

185 py

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

Comments

The jargon used in object-oriented programming is difficult to pick up and
doesn’t help the novice.

The terms instance and object are used interchangeably. When an object is
constructed, it is said to be an instance of the class. In other words, you instan-
tiate a class to create an object. This process can be repeated many times to
create many objects from the same class. Don't forget that a class is the specifi-
cation, whereas an object is the physical memory within the computer used to
create an instance of the class.

In the early days of OOP, the code that manipulated the member variables
was called either member functions or methods. Depending upon which camp
you came from, only one naming methodology was correct. To laymen,
methods and member functions are exactly the same thing. They are computer
code used to manipulate data members. Don't be confused: Member functions
and methods are the same thing.

COMPLEXITY

5.5

BEGINNING
How do I...

Know which constructor to use
when there are several to choose
from?

Problem

In this How-To, you will develop and study a class named Shape. The Shape
class finds the area or volume of the following geometric shapes: circle,
rectangle, and cube. To do this, you can use the same class but build the object
with a different constructor. Depending upon how the constructor definitions
are written, you can impose actions upon the class as it instantiates the object.

Technique

A constructor always has the same name as its class. However, you can have as
many constructors as you want within the same class as long as they have
different signatures. The word signature simply means the constructors have
different numbers or data types of input parameters. The technique of using
constructors with different signatures is known as overloading. Because of the
different signatures, the C++ compiler can differentiate between the construc-
tors and select the one most appropriate for the task of building the object.

5.5

Steps

KNOW WHICH CONSTRUCTOR TO USE

When following constructor is invoked

Shape circle(5);

the compiler spots that only one input parameter is of type integer. The
only signature that fits this call is the constructor that has only one input
parameter of type integer. Therefore, that constructor is the one used to
instantiate the object.
Shape: :Shape(int a)
{

result = 3.143 * a * a;

}

The object is built and given the unique (within this program) variable
name of circle (See Figure 5.14).

main() —— Shape.circle(5);

Shape
(int a, int b)

Figure 5.14 The Shape constructor called with a single integer
input leads to this object.

When the following alternative constructor is invoked

Shape square(3,4);

the compiler spots that two input parameters are of type integer. The
only signature that fits this call is the constructor that has two input
parameters of type integer. Therefore, that constructor is the one used
to instantiate the object.

Shape::Shape(int a, int b)
{

}

result = a*b;

188

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

The second object is built and given the unique name of square (see
Figure 5.15).

main() — Shape.circle(3,4); L

result square

Shape
(int a)

Figure 5.15 The Shape constructor called with two integer input
leads to this object.

Finally, when the following constructor is invoked

Shape box(3,4,5);

the compiler spots that three input parameters are of type integer. The

only signature that fits this call is the constructor that has three input

parameters of type integer. Therefore, that constructor is the one used

to instantiate the object.

Shape: :Shape(int a, int b, int c)
{
result = a*b*c;

}
A The third object is built and given the name box (see Figure 5.16).

5.5

KNOW WHICH CONSTRUCTOR TO USE

— Shape.circle(3,4,5);|

main()

Shape
(inta)

Figure 5.16 The Shape constructor called with three integer inputs
leads to this object

How It Works

In the following program, the class Shape has a private member variable named
result of type double. This variable is used to hold the answer calculated by
the object. The program uses three overloaded constructors, each of which has
its own signature. The difference in signatures leads to the use of one of three
possible definitions when an object is created from the class. A final member
function called show is used to access the private member variable result and
show it to the screen. The complete program is as follows:

// A class with three constructors
// This is overloading

#include <iostream.h>

class Shape {

private:
double result;

public:
Shape(int a);
Shape(int a, int b);
Shape(int a, int b, int c);
void Show(void);

};

// This constructor is for circles
Shape: :Shape(int a)
{

}

result = 3.143 * a * a;

// This constructor is for rectangles
Shape: :Shape(int a, int b)
{

m CHAPTER 5
COMMON MISTAKES MADE WITH CLASSES

result = a*b;

}

// This constructor is for boxes
Shape: :Shape(int a, int b, int c)

{
result = a*b*c;

}

void Shape::Show(void)

{
cout << "The result is : " << result << endl;

}

main()

{
Shape circle(5);
Shape square(3,4);
Shape box(3,4,5);
circle.Show();
square.Show();
box.Show() ;
return(0);

}

Comments

In the preceding program, three objects were created from the Shape class. It is
worth noting that each one is completely separate and unique. Each one has its
own data member result and its own Show member function. They all exist at
the same time and are objects that can be called into life by the main program.
This is shown in Figure 5.17.

result | square

Figure 5.17 The relationship to main after three objects have
been constructed from the Shape class.

i o
IMPLEMENT FUNCTION OVERLOADING

COMPLEXITY

INTERMEDIATE

56 Howdol...
Implement function overloading?

Problem

Often a specific task must be performed on inputs to functions. It might be that
different data types or different numbers of parameters are required for such
operations. Traditionally, in languages such as C, you could define a function
including the parameters to that function by a name only once. If a variety of
flavors of the function were required, each flavor had to have a different name
so that essentially it was a different function. In OOP languages such as C++,
both the name and the input parameters differentiate functions. The function
name and its parameters are known as the signature of the function. This allows
for groups of related functions that perform similar tasks and have the same
name, but that can be distinguished from one another by their input parame-
ters. This is called function overloading.

The following example creates and makes use of overloaded functions.

Technique

Some simple rules must be followed to implement function overloading.
Basically, overloading means one function name will have many definitions.
Note that this allows a common interface to deal with different situations.

Steps

The first step is to create a program that deals with one situation. You can
then build on that as needs occur.

The following listing deals with integers. The function Alpha accepts two
integers as input, multiplies them together, and returns the result. The
result is fed to the function show, which takes an integer as input. This
value is shown onscreen.

// Overloaded Functions

#include <iostream.h>

int Alpha(int x,int y);
void Show(int Result);

void main()

{
int x,y;

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

cout << "Enter an Integer : ";

cin >> x;

cout << endl << "Enter another Integer : ";
cin >> y;

Show(Alpha(x,y));

}
int Alpha(int x,int y)
{
return x*y;
}
void Show(int Result)
{
cout << endl << "The Result is " << Result;
}

The problem in the preceding example lies in the fact that you should
only enter integers. What if you wanted to enter a floating-point number
or a character? As the program stands, you can’t enter anything other than
an integer because it gives weird results. In a real-life situation, the
programmer should add extra code to check that the input is of the
correct data type and reject any incorrect input. This error checking can
be used to force the user to enter the correct form of input. However, in
the example this is where function overloading comes in. The next step is
to design two new functions, also called Alpha, that can deal with the
different data types. Also, you must design two more function definitions
for the show function to deal with the other data types.

// Overloaded Functions

#include <iostream.h>

int Alpha(int x,int y); //Integers
float Alpha(float x,float y); //Floats
char Alpha(char x,char y); //Characters

void Show(int Result);
void Show(float Result);
void Show(char Result);

void main()

{
int x,y;
float s,t;
char a,b;

cout << "Enter an Integer : ";

cin >> x;

cout << endl << "Enter another Integer : ";
cin >> y;

Show(Alpha(x,y));

5.6

IMPLEMENT FUNCTION OVERLOADING

cout << endl << "Enter a Float : ";

cin >> s;

cout << endl << "Enter another Float : ";
cin >> t;

Show(Alpha(s,t));

cout << endl << "Enter a Character : ";

cin >> aj;

cout << endl << "Enter another Character : ";

cin >> b;

Show(Alpha(a,b));

}
int Alpha(int x,int y)
{

return x*y;
}
void Show(int Result)
{

cout << endl << "The Result is " << Result << endl;
}
float Alpha(float x,float y)
{

return x*y;
}
void Show(float Result)
{

cout << endl << "The Result is " << Result << endl;
}
char Alpha(char x,char y)
{

if (x<y)

return x;
else
return y;

}
void Show(char Result)
{

cout << endl << "The First Character is " << Result << endl;
}

How It Works

In the preceding sample program, there are two integer variables, two float vari-
ables, and two character variables within the main body of the program. First,
the code in the main program establishes that the user will be invited to enter
two integer values at runtime. These two variables are offered to the overloaded

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

function Alpha as its two input parameters. At compile time, the correct version
of Alpha—the one with an input of two integers—is established and that
version is used. The other two versions of Alpha are different functions and are
ignored at this point in time. The next section of code in main performs the
same operation for two float inputs. Again, overloaded function Alpha is offered
two inputs, but this time they are floats. At compile time, the correct version of
Alpha is established and the correct version is used. The same process occurs
for the next two inputs. These two inputs are characters, but due to overloading
the compiler can parse the code and determine the correct version of the func-
tion to use. The process of determining the correct version of the overloaded
function that will be used is established at compile time. This is known as early
binding.

Comments

The example shown deals with only three combinations of data types. You
could quite easily create other overloaded functions that use mixed data types.
You could create as many as you like covering all possibilities of input. A more
advanced way around selecting differing data types is covered within the topic
of template classes in Chapter 6, “Template Classes.”

COMPLEXITY

5.7

INTERMEDIATE
How do I...

Correctly make use of
inheritance?

Problem

Beginning C++ programmers often run into several problems when trying to
use inherited classes. The most common mistake is forgetting to declare the
inheritance from a base class. The programmer must also be aware that in order
for member variables to be inherited, they must be declared as protected and
not private. These errors might cause other developers using your base class to
try to re-declare the member variables in the derived class because they cannot
gain access to the private base class member variables. By making this error,
you are including a class that is not being used.

Technique

When designing a class, it is very important to decide whether the class will be
used in the future via inheritance. If it will be, you must make sure that the
data members are protected and not private. Also, if you are going to allow the

5.7

CORRECTLY MAKE USE OF INHERITANCE

member functions to be used and altered, you must declare them as virtual
functions.

To declare the inheritance of a class, you must use the syntax shown in
Figure 5.18.

Class Alpha : Public Beta {};

Derived
class

Base class
defined as public
to derived class

Figure 5.18 Alpha class inheriting
from Beta base class.

You will be creating a new class called Alpha that inherits all the member
variables and functions found in class Beta, and makes them public to the new
derived class.

Also, the way you use the constructor is slightly different. Because you are
inheriting from another class (the base class), Beta needs to have some infor-
mation passed to it. As you know, you use a constructor to pass information
into a class. The following syntax is used to call a derived class’s constructor.

Alpha::Alpha(x,y,z):Beta(x,y)

Here, you use the standard syntax of a constructor but you add a colon to
the end and add a call to the base class constructor. Also, you can pass on
some of the data (in this case, x and y).

Steps

In this example, you are going to create a derived class called Alpha,
which inherits from class Beta. Remember that Beta is the base class, so
it will be designed first.

#include <iostream.h>

class Beta {

protected:
int valit,val2;
int total;

public:
void Calc(void);
void Show(void);
Beta(int x, int y);

b

Note that the data members are protected not private. This allows them
to be accessed by derived classes.

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

The next step is to create the member function definitions for the class.

void Beta::Calc(void)

{
t otal = Valil * Val2;
}
void Beta: :Show(void)
{
cout << "The total is " << total << endl;

}
Beta::Beta(int x, int y)
{

Vall = x;

Val2 = y;
}

These are straightforward definitions. The constructor accepts two integer
inputs. The calc function multiplies the two values together and stores
the result in total.

To test the class, create a main function to invoke the class.

void main(void)
{
int x,y;
cout << "Enter a Number ";
cin >> x;
cout << endl << "Enter another Number ";
cin >>y;

Beta First(x,y);
First.Calc();
First.Show();

}

Now, you must design the derived class that will inherit from class Beta.

class Alpha : public Beta{
protected:
int Vvals3;
int Newtotal;

public:
void CalcII(void);
void ShowII(void);
Alpha(int z,int x,int y);
}s

You can see in the header line of the class declaration that you specify
that the class inherits from class Beta. This makes Beta’s member func-

tions and member variables public to it.

5.7

CORRECTLY MAKE USE OF INHERITANCE

Next, you must add member function definitions for the new derived
class. Remember that you need to design only the new functions required
for this new class because the functions for the base class are already
written and tested. At no time should you alter the base class.

void Alpha::CalcII(void)

{
Newtotal = Vall * Val2 * Val3;

}

void Alpha::ShowlII(void)
{

cout << "The newtotal is " << Newtotal << endl;

Alpha::Alpha(int z, int x, int y):Beta(x,y)
{

Val3 = z;
}

Take special note of the constructor design. The derived class Alpha
requires three inputs, but it passes on two of them to the base class Beta.
Also, note that the calcII function is using member variables vali and
val2, which actually belong to class Beta not class Alpha. This is allowed
because the class is designed to have protected member variables.
Therefore, all member variables are public within the classes.

The final stage is to alter the main program to make use of the new
derived class Alpha. Remember, it is the Alpha class that you will use.
Alpha will be able to call member functions from the base class if
required.

void main(void)

{
int x,y,z;
cout << "Enter a Number ";
cin >> x;
cout << endl << "Enter another Number ";
cin >>y;
cout << endl << "Enter a third Number ";
cin >> z;
Alpha First(z,x,y);
First.Calc(); //Base Class
First.CalcII(); //Derived Class
First.Show(); //Base Class
First.ShowII(); //Derived Class
}

In this example, the user enters three integers. An instance of derived
class Alpha is created and passed the three values. Alpha's constructor
passes on two of the values to base class Beta. After the data is in the
correct member variable, the calculations can be performed. To prove that

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

all member functions are available to the derived class, a call is made to
each one.

How It Works

// Inherit
#include <

class Beta

class Alph

void Beta:

{
total

When a class is designed, the programmer must decide whether the class is to
be used via inheritance. If so, the data members must be declared to be
protected. After the class is designed and tested, the programmer can forget
about it because she knows that the class does its job.

Because the class has been tested, if it is to be used as a base class the
programmer should simply be able to use it and not worry whether it will
work.

When designing a derived class, it is very important to remember to specify
the name of the base class in the header of the derived class. Also, specify that
the base class is public to the new derived class.

During the design of the derived class constructor, the programmer must
pass on the correct number of inputs to the base class constructor. This is the
correct way to pass parameters to the base class.

After this is done, the programmer has access to all member variables and
functions of both classes.

If required, the programmer can call functions from both the base and
derived class, thus extending the capability of the program.

ance
iostream.h>

{

protected:
int valit,val2;
int total;

public:
void Calc(void);
void Show(void);
Beta(int x, int y);

}s

a : public Beta{
protected:
int Vval3;
int Newtotal;

public:
void CalcII(void);
void ShowII(void);
Alpha(int z,int x,int y);
};

:Calc(void)

= Vall * Val2;

5.7

CORRECTLY MAKE USE OF INHERITANCE

}
void Beta: :Show(void)
{
cout << "The total is " << total << endl;
}
Beta::Beta(int x, int y)
{
Vall = x;
Val2 = y;
}
void Alpha::CalcII(void)
{
Newtotal = Vall * Val2 * Val3;
}

void Alpha::ShowII(void)
{

cout << "The newtotal is " << Newtotal << endl;

Alpha::Alpha(int z, int x, int y):Beta(x,y)

{
Val3 = z;
}
void main(void)
{
int x,y,z;
cout << "Enter a Number ";
cin >> x;
cout << endl << "Enter another Number ";
cin >>y;
cout << endl << "Enter a third Number ";
cin >> z;
Alpha First(z,x,y);
First.Calc(); //Base Class
First.CalcII(); //Derived Class
First.Show(); / /Base Class
First.ShowII(); //Derived Class
}

Comments

The most common problem beginning developers encounter is forgetting to set
the data members of a base class as protected. If this is not done, developers
have difficulty later when trying to inherit from the class. Another common
mistake is forgetting to add the extra call to the base constructor at the end of
the header for the derived constructor. Because of these mistakes, many C++
programmers end up redefining data members and member functions in a
derived class that already exists in the base class. By doing so, they miss the
whole point of being able to inherit something that already exists.

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

COMPLEXITY

INTERMEDIATE

5.8 Howdol...
Pass parameters back through the
C++ inheritance mechanism to
parent classes?

Problem

One of the most difficult things encountered by C++ programmers is the
construction of a coherent inheritance model. They find constructors an espe-
cially difficult practical exercise and become terribly confused by parameters
and where they are eventually stored.

Technique

The sample program later in this How-To creates a simple OOP program that
creates a base class named Triangle and a child class named Prism. Triangles
are two-dimensional objects with three sides. Prisms have three dimensions and
have triangular side profiles; thus a prism is a triangle with depth (see Figure
5.19). The basic characteristics of a triangle apply to a prism, so those proper-
ties can be inherited and extended to create a prism. The ability to extend
existing characteristics is the fundamental feature of inheritance.

height height
> >
base base
Triangle Prism

Figure 5.19 The relationship between a triangle and
a prism.

Steps

The Triangle class contains three protected member variables named
base, height, and area, respectively. As their names imply, these
member variables will store the base and height dimensions of a triangle.
base and height can be used to calculate the area of the triangle.

ot .
PASS PARAMETERS BACK WITH C++ INHERITANCE TO PARENT CLASSES

protected:
double base;
double height;
double area;

The constructor is used to initialize the base and height data members
when a triangle object is created.

Triangle(double b, double h)
{
base = b;
height = h;
}

This is shown in Figure 5.20.

Triangle
constructor

Triangle
class

height

Figure 5.20 The constructor
passes data to the protected
member variables within the
Triangle class.

As a side issue, if you are writing classes that will be inherited, declare
your data members as protected if you want them to be used by the
derived classes.

The Triangle class contains two public member functions. The first is
CalcArea, Which is used to calculate the area of the triangle. It also stores
the result in the protected member variable area.

void CalcArea(void)

{
area = (base * height) / 2;

}

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

The second method, ShowArea, is used to print the area to the screen.
void ShowArea(void)
{
cout << "The area is : " << area << endl;
}

There is nothing too dramatic about those two member functions. The
Triangle class could be used on its own to calculate the areas of triangles
by simply instantiating an object and using the calcArea() and
ShowArea() member functions. The apparent confusion comes when you
inherit those basic characteristics and write the Prism class. Many begin-
ners find it difficult to grasp the concept that although the member vari-
ables base, height, and area, and the member function ShowArea are
declared within the Triangle class, they are freely available to use in any
Prism object.

The class has only one protected member variable named depth.
However, because of inheritance, it also has copies of the member vari-
ables base and height available to it. The constructor for prism has to
deal with the instantiation of these member variable when it creates a
Prism object. It is done with the following code fragment:

Prism(double d, double b, double h):Triangle(b,h)

{
depth = d;
}

The Prism constructor accepts three data items. It knows what to do with
the first one d, but has no instructions about the second two, b and h.
Because the Prism constructor doesn't know what to do with them, it
passes them to the Triangle constructor, which is attached to the end of
the Prism constructor definition (see Figure 5.21). The Prism constructor
is satisfied and couldn’t care less what the Triangle constructor does
with the two spare values. If the Triangle constructor can deal with the
two values, it will do so (and in fact does in our case). If not, it will flag a
compilation error.

Here is an alternative way of looking at the construction of an inherited
object (see Figure 5.22).

ot 20:
PASS PARAMETERS BACK WITH C++ INHERITANCE TO PARENT CLASSES

Prism
constructor

Triangle
constructor

height

Triangle
class

Figure 5.21 The Prism constructor passes data its
own member variable depth, but passes the
remaining data to the protected data members
within the Triangle class.

Prism can
deal with d

]

Prism(double d, double b, double h):Triangle(b,h)

Pass b and h
on to Triangle

Figure 5.22 An alternative view of the
Prism constructor passing its own member
variable depth, but passing the remaining
data to the protected member variables
within the Triangle class.

depth=d;

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

How It Works

The basic functionality of Triangle is defined in the Triangle class. Inline
definitions are used for the member functions because they are very short and
simple. The prism class inherits the characteristics of the Triangle base class
and adds its own enhancements to it. These enhancements consist of a third
member variable named depth and a member function named CalcArea. This
new version of CalcArea is used to calculate the area of a prism rather than a
triangle and is said to override the definition of calcArea in the Triangle base
class. When an instance of Prism is created, it uses the CalcArea associated
with the Prism class. If an instance of Triangle is created, it uses the CalcArea
associated with the Triangle class.

The main section of the following program creates an instance of Prism
named test and gives it three values. Invisible to the programmer, the first
parameter is acted on by the Prism constructor and the other two parameters
are passed on to the Triangle constructor. Had a suitable Triangle constructor
not been available a compilation error would have been flagged.

The rest of the program simply calculates the volume of the prism and
displays the result to the screen. Here is the full listing.
// Inheritance

#include <iostream.h>

class Triangle {
protected:
double base;
double height;
double area;

public:
Triangle(double b, double h)
{
base = b;
height = h;
}
void CalcArea(void)
{
area = (base * height) / 2;
}
void ShowArea(void)
{

cout << "The area is : "
<< area << endl;

}
};
class Prism:public Triangle
{
protected:
double depth;
public:

Prism(double d, double b, double h):Triangle(b,h)

5.8

PASS PARAMETERS BACK WITH C++ INHERITANCE TO PARENT CLASSES

{
depth = d;
b
void CalcArea(void)

{
area = (base * height * depth) / 2;

b

main()

{
Prism test(3,5,10);
test.CalcArea();
test.ShowArea();
return(0);

Comments

Confusion can arise when an appropriate constructor buried deep in the inheri-
tance model cannot be found, and therefore all of the parameters cannot be
dealt with. The example | have given you will always work because the correct
number of parameters and the appropriate constructors are in the inheritance
chain. But modify your main program as follows and see the result. As shown
in the following code, I have only supplied two parameters to the constructor
instead of three.

main()

{
Prism test(3,5);
test.CalcArea();
test.ShowArea();
return(0);

My compiler simply says:
------------------- Configuration: Listing 5.8b - Win32 Debug-------------------
Compiling...
Listing5.8b.cpp
F:\How To\Chapter 05\Listing5.8b\Listing5.8b.cpp(44) : error C2661:
'Prism::Prism' : no overloaded function takes 2 parameters
Error executing cl.exe.

Listing5.8b.obj - 1 error(s), @ warning(s)

Unless you really are experienced in C++ programming this message means
very little and it simply scares the beginner.

Now try the following amendment to the main program. This time | have
given it four parameters instead of three.
main()

{
Prism test(3,5,10,4);
test.CalcArea();

205 py

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

test.ShowArea();
return(0);

My compiler simply says:

---------- Configuration: Listing5.8b - Win32 Debug--------------------

Compiling...

Listing5.8b.cpp

F:\How To\Chapter ©05\Listing5.8b\Listing5.8b.cpp(44) : error C2661:
'Prism::Prism' : no overloaded function takes 4 parameters

Error executing cl.exe.

Listing5.8b.obj - 1 error(s), @ warning(s)

I was using Microsoft Visual C++ version 5 at the time of writing. If you are
using a different compiler, the error message and format will be different. The
actual error will, of course, be the same.

The error message tells you that the compiler could not find an appropriate
constructor, or chain of constructors, to deal with the given number of parame-
ters in the creation of the object.

COMPLEXITY

5.9

INTERMEDIATE
How do I...

Distinguish between virtual
classes and nonvirtual classes?
How do | know when to use
virtual classes and what does the
word virtual mean in C++?

Problem

When building up a hierarchical inheritance network, it is difficult to know
when and when not to use the word virtual. Often it seems to make no differ-
ence whether classes are declared as virtual or not.

Technique

Some simple rules can be applied to verify whether functions should be
declared as virtual. It depends upon whether multiple inheritance is to be used.
The key is an understanding of the meaning of the term virtual. When a func-
tion is declared as virtual, the derived class contains only a reference back to
the original base class, and so uses the single occurrence of the original (see
Figure 5.23). You can declare any member function as virtual and in most cases

5! 2o B

KNOW WHEN TO USE VIRTUAL CLASSES AND NONVIRTUAL CLASSES

there is (to the end user) no apparent difference. However, in order to avoid
redefinition of functions in a multiple inheritance model you should always
declare functions to be virtual.

virtual base class
B1

derived class derived class
C1 c2

Figure 5.23 Two derived classes sharing a virtual
base class.

When a function is declared as nonvirtual, the derived class contains a copy
of the original base class; therefore, multiple occurrences of the original exist
within the inheritance hierarchy (see Figure 5.24).

virtual base class
Bl

derived class
Cc1

virtual base class
Bl

derived class
c2

Figure 5.24 Two derived classes containing
copies of the base class.

To demonstrate the art of virtual functions you will build up a sequence of
programs that inherit from a simple base class and add ever more functionality
to the derived classes. You will use a model based upon Ohm’s Law. Ohm’s Law
is the underlying principle of all DC electric circuits and it concerns the rela-
tionship between resistance, voltage, and current (see Figure 5.25). Do not be
concerned if you aren't into electronics, it is only the three simple equations
that you are interested in.

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

V=1*R

—-I< =ml<

where V=voltage
I=current
R=resistance

Figure 5.25 The
three Ohm’s Law
equations used in

this section.

Steps

Start by writing a simple class that holds the value of a resistor (in ohms)

and displays the value to the screen. The following code declares the
member function Rout to be virtual, but you will find that if you remove
the word virtual it makes no difference to the program. The word
virtual only has an effect on derived classes of which, as yet, there are
none.

// Inheritance
#include <iostream.h>

class Resistance
{
protected:
int R;
public:
Resistance(int r) { R =r ;}
virtual void Rout(void) { cout << R << endl;}
};

main()

{
Resistance R1(47000);
R1.Rout();
return(0);

}

Using the functionality of the Resistance class, you can take advantage
of inheritance in C++ to create two new classes. The voltage class
accepts the voltage (v) and resistance (R) and then uses them to calculate
the current (1). Note the first line definitions of the voltage class and the
Current class. They both refer to Resistance as virtual.

class Voltage : virtual public Resistance

class Current : virtual public Resistance

5! 200
KNOW WHEN TO USE VIRTUAL CLASSES AND NONVIRTUAL CLASSES

This gives rise to the inheritance model shown in Figure 5.26.

virtual base class
Resistance

derived class derived class
Voltage Current

Figure 5.26 The virtual inheritance model used by
Voltage and Current

Here is the program; give it a try.

// Inheritance
#include <iostream.h>

class Resistance

{
protected:
int R;
public:
Resistance(int r) {R = r;}
virtual void Rout(void) {cout << R << endl;}
}s
class Voltage : virtual public Resistance
{
protected:
double V;
double I;
public:
Voltage(double v, int r):Resistance(r)
{V=v;}
virtual void CalcI(void)
{I = V/R;}
virtual void Iout(void)
{cout << I << endl;}
b
class Current : virtual public Resistance
{
protected:
double V;
double I;
public:

Current(double i, int r):Resistance(r)

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

{I =15}
virtual void Vout(void)
{cout << V << endl;}
virtual void CalcV(void)
{v = I*R;}
};

main()
{
// Given the voltage and resistance
/] We can calculate the current
Voltage V1(10,27000);
V1.CalcI();
V1.Rout();
V1.Iout();
cout << endl;

// Given the current and the resistance
// We can calculate the voltage

Current I1(0.2,68000);

I1.CalcV();

I1.Rout();

I1.Vout();

cout << endl;

return(0);

}

You can modify the preceding program to produce a nonvirtual inheri-
tance model by simply removing the keyword virtual from the declara-
tions of voltage and Current.

class Voltage : public Resistance

class Current : public Resistance

This modification gives rise to the nonvirtual inheritance model shown in

Figure 5.27.
virtual base class virtual base class
Resistance Resistance
A A
derived class derived class
Voltage Current

Figure 5.27 The nonvirtual inheritance model
used by Voltage and Current.

5! 2
KNOW WHEN TO USE VIRTUAL CLASSES AND NONVIRTUAL CLASSES

Here is the nonvirtual version of the program. Again, at this level it works
and appears to be identical to its virtual counterpart.

// Nonvirtual Inheritance
#include <iostream.h>

class Resistance

{
protected:
int R;
public:
Resistance(int r)
{R=r;}
virtual void Rout(void)
{cout << R << endl;}
};
class Voltage : public Resistance
{
protected:
double V;
double I;
public:
Voltage(double v, int r):Resistance(r)
{V=v;}
virtual void CalcI(void)
{I = V/R;}
virtual void Iout(void)
{cout << I << endl;}
}s
class Current : public Resistance
{
protected:
double V;
double I;
public:
Current(double i, int r):Resistance(r)
{I =15}
virtual void Vout(void)
{cout << V << endl;}
virtual void CalcV(void)
{V = I*R;}
}s
main()
{

// Given the voltage and resistance
/] We can calculate the current
Voltage V1(10,27000);

V1.CalcI();

V1.Rout();

V1i.Iout();

cout << endl;

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

// Given the current and the resistance
// We can calculate the voltage

Current I1(0.2,68000);

I1.CalcV();

I1.Rout();

I1.Vout();

cout << endl;

return(0);

}

I Having created classes to deal with resistance, voltage, and current, it
makes sense to unite them into a single ohmsLaw class because that is
their common root. You will do this using a multiple inheritance model
that draws together all the functionality developed so far. Figure 5.28
shows that model.

virtual base class
Resistance
derived class derived class
Voltage Current

N

derived class
OhmsLaw

Figure 5.28 The virtual multiple inheritance model of
the OhmsLaw class.

The following program pulls together all the operations for Ohm’ Law in
order to calculate and display any combination of voltage, resistance, and
current. The important point is that you have used multiple inheritance
and virtual classes to collect those actions.

// Multiple Inheritance
#include <iostream.h>

class Resistance

{

5! N
KNOW WHEN TO USE VIRTUAL CLASSES AND NONVIRTUAL CLASSES

protected:
int R;
public:
Resistance(int r) {R =r;}
virtual void Rout(void)
{cout << R << endl;}

b
class Voltage : virtual public Resistance
{
protected:
double V;
double I;
public:
Voltage(double v, int r):Resistance(r)
{V=yv;}
virtual void CalcI(void)
{I = V/R;}
virtual void Iout(void)
{cout << I << endl;}
}s
class Current : virtual public Resistance
{
protected:
double V;
double I;
public:
Current(double i, int r):Resistance(r)
{I =1}
virtual void Vout(void)
{cout << V << endl;}
virtual void CalcV(void)
{V = I*R;}
b
class OhmsLaw : public Voltage, public Current
{
public:
OhmsLaw(double i, double v, int r)
:Current(i,r),Voltage(v,r),Resistance(r){ }
b
main()
{
OhmsLaw L1(0.02,10,1000);
L1.CalcV();
L1.CalcI();
L1.Rout();
L1.Vout();
L1.Iout();

cout << endl;

return(0);

CHAPTER 5

COMMON MISTAKES MADE WITH CLASSES

How It Works

I now invite you to convert the virtual class model in the previous program into
a nonvirtual inheritance model by simply removing the keyword virtual from
the declarations of voltage and Current just as before.

class Voltage : public Resistance

class Current : public Resistance

This modification gives rise to the nonvirtual inheritance model shown in
Figure 5.29 and this is where the problems arise. Because the derived classes
Voltage and current inherit from a nonvirtual Resistance class, each makes a
physical copy of Resistance. At the Voltage and current class level this does
not present a problem because they are separate classes. However, when they
are combined into the ohmsLaw class using multiple inheritance, the compiler
sees two identical versions of the Resistance class and flags an error.

virtual base class virtual base class
Resistance Resistance
A A
derived class derived class
Voltage Current

derived class
OhmsLaw

Figure 5.29 The nonvirtual multiple inheritance
model of the OhmsLaw class.

Figure 5.29 shows two references to the Resistance class and they come
together in the ohmsLaw class. This is illegal in C++. Two items with exactly the
same name cannot exist because the program will refuse to compile. Here is the
complete program listing; it is just the code listing from step 7 with the virtual
class directives removed. Try out the modification and experience the compila-
tion errors.

// Nonvirtual Multiple Inheritance
// WARNING THIS PROGRAM DOES NOT WORK

5.9

KNOW WHEN TO USE VIRTUAL CLASSES AND NONVIRTUAL CLASSES

// IT IS DESIGNED TO SHOW AN ERROR
#include <iostream.h>

class Resistance
{
protected:
int R;
public:
Resistance(int r)
{R=r;}
virtual void Rout(void)
{cout << R << endl;}

b

class Voltage : public Resistance
{
protected:
double V;
double I;
public:
Voltage(double v, int r):Resistance(r)
{V=v;}
virtual void CalcI(void)
{I = V/R;}
virtual void Iout(void)
{cout << I << endl;}
};

class Current : public Resistance
{
protected:
double V;
double I;
public:
Current(double i, int r):Resistance(r)
{I =15}
virtual void Vout(void)
{cout << V << endl;}
virtual void CalcV(void)
{v = I*R;}
}s

class OhmsLaw : public Voltage, public Current
{
public:
OhmsLaw(double i, double v, int r)

:Current(i,r),Voltage(v,r),Resistance(r){ }

b

main()
{
OhmsLaw L1(0.02,10,1000);
L1.CalcV();
L1.CalcI();
L1.Rout();

L 215 py

m CHAPTER 5
COMMON MISTAKES MADE WITH CLASSES

L1.Vout();
L1.Iout();
cout << endl;

return(0);
}

My compiler gave the following set of error messages. When you see this for
the first time it's quite frightening, but the secret is to make sure that an inher-
ited base class that is later recombined through multiple inheritance is defined
as virtual.

Compiling...

Listing5.10e.cpp

F:\How To\Chapter @05\Listing5.10@e\Listing5.10e.cpp(47) : error C2614:
'OhmsLaw' : illegal member initialization: 'Resistance' is not a base
or member

F:\How To\Chapter @5\Listing5.10@e\Listing5.10e.cpp(56) : error C2385:
'OhmsLaw: :Rout' is ambiguous

F:\How To\Chapter 05\Listing5.10@e\Listing5.10e.cpp(56) : warning C4385: could
be the 'Rout' in base 'Resistance' of base 'Voltage' of class 'OhmsLaw'

F:\How To\Chapter 05\Listing5.10e\Listing5.10e.cpp(56) : warning C4385: or the
'Rout' in base 'Resistance' of base 'Current' of class 'OhmsLaw'

Error executing cl.exe.

Listing5.10e.0bj - 2 error(s), 2 warning(s)

Comments

Virtual classes can be very confusing and difficult to use. As long as you under-
stand the inheritance model, you can predict where duplication will occur and
avoid the problem.

An added bonus is that virtual classes use less memory. Recall that they do
not copy the class and make several versions of it; they only refer to the orig-
inal. Therefore, there is only one copy: the original. In a large application, this
memory savings can be quite significant.

— CHAPTER 6
TEMPLATE CLASSES

TEMPLATE CLASSES

How do I...

6.1

6.2

6.3

6.4

6.5

Create a template class to represent any simple
data type and understand how to use the template
in a working C++ program?

Create a template class to represent any simple
data type and extend it to read in data to a
variable of any data type?

Create a template class to represent a compound
data type and understand how to use the template
in a working C++ program?

Write a template class that has two undefined data
types that can be resolved at a later time?

Use a template class to handle a structure?

C++ is a strongly typed language. This means the compiler checks to see
whether an integer variable is being assigned an integer value, a float variable is
being assigned a float value, and so on. This is good, safe programming practice
because it imposes discipline on the programmer. However, this same imposed
discipline also imposes the need to write unique solutions for every data type
even if the problem is the same.

CHAPTER 6

6.1

6.2

6.3

6.4

TEMPLATE CLASSES

This problem was realized way back in the early days of C++; therefore, a
concept known as template classes was incorporated into the language. A
template class is a mechanism that allows a single solution to a problem to be
written that can satisfy all data types. The actual data type required can be
specified later and the template class can then be used for a wide range of data
types, all using the same C++ template.

Create a Template Class to Represent Any Simple
Data Type and Understand How to Use the
Template in a Working C++ Program

The processes performed on simple data are often fairly standard. However,
using conventional programming, those processes would have to be written for
every conceivable data type likely to be encountered. This means any class that
operates in such a way potentially requires many definitions. Writing and
maintaining this code can be a lengthy and costly business. Using a template
class, you can overcome this problem and write a single solution that meets all
your needs for the desired process.

Create a Template Class to Represent Any Simple
Data Type and Extend It to Read in Data to a
Variable of Any Data Type

The process of using a data constant embedded within a program presents no
real problem. However, rather than storing and displaying a data constant, data
from the keyboard often needs to be read in. A template class that can be
customized to handle any simple C++ data type is initially set up and then
customized in the main program to handle a specific simple data type.

Create a Template Class to Represent a Compound
Data Type and Understand How to Use the
Template in a Working C++ Program

Much of computing is about the storage of large quantities of data. A data
structure used to store this data is called an array and is referred to as a
compound data type. As with simple data types, many class definitions are
needed to store every conceivable compound data type, and again the problem
is overcome with the use of templates.

Write a Template Class That Has Two Undefined
Data Types That Can Be Resolved at a Later Time

In practice, most, if not all, computer programs deal with multiple variables of
varying data types. If several data types are involved and similar processes are
applied to them, many definitions of those processes would be required. The
definition of a process to deal with several variables can also be captured in a
template.

6.1

CREATE AND USE A TEMPLATE CLASS FOR ANY SIMPLE DATA TYPE

6.5 Use a Template Class to Handle a Structure

The problem with structures is that they are a user-defined data type, and
therefore have an infinite number of possible definitions. The problem appears
to be that a template cannot be written for a problem that has an infinite
number of solutions. However, this is not the case, and structures can actually
be dealt with by the same solution as a simple variable. Thus, templates can be
used to solve this problem.

COMPLEXITY

| 221 p

6.1

INTERMEDIATE
How do I...

Create a template class to
represent any simple data type
and understand how to use the
template in a working C++
program?

Problem

Often when designing a program, it is required to perform a specific operation
on different simple data types. This means any class that has such a
requirement potentially requires many definitions of that class to deal with all
conceivable data types likely to be encountered. This can be a lengthy and
costly process.

Technique

By using a template, you can design a single class that operates on data of many
types instead of creating a separate class for each individual type you are likely
to use. This means you can reduce this duplication to a single class definition.
In turn, this significantly reduces source code size and increases code flexibility
without compromising type safety.

Templates are used to create a class that can operate on data of any type. The
advantages are that templates are easy to write, and you create only one generic
version of your class instead of writing many specialized but similar variations
of the same thing. In addition, template classes are said to be type-safe because
the types the template acts upon are known at compile time. At compile time,
type checking is performed and errors are picked up before they occur at
runtime.

CHAPTER 6

Steps

template<class T>
class TSimple {

TEMPLATE CLASSES

Before diving in, | will introduce you to the “data type” that the entire
process hinges on. In C++, the letter T is used to specify an unknown
data type. The use of the letter T is a convention so other letters will be
recognized by the compiler. You will see the use of other letters later in
this chapter. T is used whenever | want to specify a data type that will be
defined later. This will be used when the template is applied to a specific
application of the class after the actual data type is known.

In the first example given in Listing 6.1, you will learn how to set up a
template class that contains a single variable whose data type will be
defined in the main program.

The first step is to define the class. Figure 6.1 shows a very simple
example that holds a single member variable and a single member
function to display the contents of that member variable.

The actual
data type
is defined
later

Apply any simple
data type to this
private: data member
T data;
public:
TSimple(T n);

void Show();

Apply any simple
data type to this
member function

Figure 6.1 A simple template class definition.

Defining the constructor is just like defining a normal member function

except that you prefix the definition with the line template <class T>
and specify the input data type as T (see Figure 6.2).

The member function is even easier. Just prefix the definition with the

instruction template <class T> as shown in Figure 6.3.

A | 223 p
CREATE AND USE A TEMPLATE CLASS FOR ANY SIMPLE DATA TYPE

This is a template
definition and as yet we
don’t know the simple
data type

template<class T>
TSimple<T>::TSimple(Tn)

n will be of a
simple data type to
be defined later

data =n;

Figure 6.2 A simple template class
constructor definition.

Thisis a
template
class

template<class T>
void TSimple<T>::Show()
{

cout<<data<<endl;

}

Figure 6.3 A simple template
member function definition.

I so far, you have set up the class definitions and created a template class
that can be of any data type. When you move into the main program you
tell the class what the actual data type is to be. In this example, choose
the integer data type (see Figure 6.4).

This converts the
generic class into
an integer class

TSimple<int> x(25);

Figure 6.4 Customizing the
template class to integer.

The action is virtually identical when the template class is converted into
a character class (see Figure 6.5).

CHAPTER 6

TEMPLATE CLASSES

This converts the
generic class into
a character class

TSimple<char>y(‘P’);

Figure 6.5 Customizing the
template class to character.

IEM When the template class is defined to double the process is identical
(see Figure 6.6).

This converts the
generic class into
a double class

TSimple<double> z (1.25);

Figure 6.6 Customizing the
template class to double.

How It Works

Listing 6.1 shows how the class is defined to accept any simple data type. The
constructor and single member function are also type independent. In the main
body of the program, three instances of the generic template class are created.
The first object, x, has its member variable data created as type integer. The
second object, y, is created using type char and the third object, z, is created
using type double. The program simply shows how the single template class
can be configured to deal with any simple data type.

Listing 6.1 A Single Class Template with a Simple Member Variable; Three
Objects Are Created, Each Using a Different Data Type

// Template using simple data types.
// T is used to specify unknown data type.

#include <iostream.h>

template <class T>
class TSimple {
private:
T data;
public:
TSimple(T n);
void Show();
};

6.2

CREATE A TEMPLATE CLASS AND iEXTEND IT TO READ IN ANY DATA

template <class T>
TSimple<T>::TSimple(T n)
{

data = n;

}

template <class T>
void TSimple<T>::Show()
{

cout << data << endl;

| 225 pa

}
main()
{
TSimple<int> x(25);
Xx.Show();
TSimple<char> y('P");
y.Show();
TSimple<double> z(1.25);
z.Show();
return(0);
}
The screen output should look something like this:
25
P
1.25
Comments
Try changing the code to use other simple data types such as float and see
how flexible the template class can be.
COMPLEXITY
INTERMEDIATE
6.2 How dol...

Create a template class to
represent any simple data type
and extend it to read in data to a
variable of any data type?

Problem

The problem here is very similar to that described in the previous How-To. This
time however, rather than storing and displaying static data, you are reading in
some data from the keyboard. You do not know what that data type is initially,
but you can set up a template class that can be customized to handle any
simple C++ data type.

CHAPTER 6

TEMPLATE CLASSES

Technique

The technique is virtually identical to the technique introduced in the previous
How-To. All you need to do is add a member function to your template class
that asks the user to enter some data. This new member function is set up to
handle any simple data type. Within the main program when you create an
object based upon the class, instruct the class to handle a simple data type such
as an integer or character. After that has been done, all data types
represented by T become an integer or character.

Steps

All you need to do is add a new member function, which | have called
Gather (). Notice that | have changed the signature of the constructor. In
the previous How-To, the constructor was used to initialize a data
constant in your object. In this example, you are using Gather () to
collect data at runtime.

template <class T>
class TSimple {
private:

T data;

public:

TSimple();
void Gather();
void Show();

}s

Next, you must give a definition of your new Gather () member function.
Other than the first line describing the template, it is exactly the same as
a normal OOP definition of a member function.
template <class T>

void TSimple<T>::Gather()

{
cout << "Enter the data : ";
cin >> data;

}

In the main body of the program, create an instance of TSimple and
stamp the data type as integer. From then on, simply invoke the
member function in normal OOP fashion and it behaves in an integer

manner.

main()

{
TSimple<int> x;
x.Gather();
x.Show();
return(0);

s L 227 p
CREATE A TEMPLATE CLASS AND EXTEND IT TO READ IN ANY DATA

How It Works

Listing 6.2 is a full program that shows how to set up the Tsimple class for any
simple data type. The first call deals with integers, the second call with
characters, and the third call with doubles. After all the data is read in using the
new Gather () member function, the data is shown to the screen.

Listing 6.2 Listing 6.2 Is an Extension of Listing 6.1 and Has an Additional
Member Function That Allows Runtime Input

// Template reads in a simple data type.
// T is used to specify an unknown data type.

#include <iostream.h>

template <class T>
class TSimple {
private:
T data;
public:
TSimple();
void Gather();
void Show();
}s
template <class T>
TSimple<T>::TSimple()
{

}

cout << "Template class constructed" << endl;

template <class T>

void TSimple<T>::Gather()

{
cout << "Enter the data : ";
cin >> data;

}

template <class T>
void TSimple<T>::Show()

{
cout << data << endl;
}
main()
{

TSimple<int> x;
x.Gather();

TSimple<char> y;
y.Gather();

TSimple<double> z;
z.Gather();

4% CHAPTER 6
TEMPLATE CLASSES

X.Show();
y.Show();
z.Show();

return(0);

My screen looked like this:

Template class constructed
Enter the data : 77
Template class constructed
Enter the data : P
Template class constructed
Enter the data : 1.2345

77

P

1.2345

Press any key to continue

Try out the program and see how yours compares.

Comments

Again the simple data type can be made to be any legal C++ simple data type. |
have used integer, character, and double, but there is no reason why you
couldn't use float or even bool if you wanted to. Try modifying the preceding
program to accept other simple data types and observing the results.

COMPLEXITY
INTERMEDIATE

6.3 How dol...
Create a template class to
represent a compound data type
and understand how to use the
template in a working C++
program?

Problem

Much of computing is about the storage of large quantities of data items. One
storage structure that can store multiple data items is an array. As in the
problem with simple data types, lots of class definitions would be needed to
store every conceivable data type. The problem is overcome with the use of
templates.

6.3

CREATE AND USE A TEMPLATE TO REPRESENT A COMPOUND DATA TYPE

Technique

The technique is virtually identical to the example in the previous How-To. The
main difference is you specify that the member variable holding the data of
unknown data type is a pointer to a block of memory. You should recall that
any array variable is in fact a pointer to an area of memory (see Figure 6.7).

A pointer to a
memory block
where the data
will be stored

T*data;

As yet an
unknown
data type

Figure 6.7 The pointer to the array of as
yet unknown underlying data type.

Steps

The first step (as in the examples in the previous How-Tos) is to define
the class. | will again give a very simple example that holds a single
member variable that is a pointer to an area of memory. The size of the
memory block will be defined later when the object is constructed.
Member functions are used to collect the data to be stored in the array
and to display the contents of the array to the screen.
template <class T>
class TArray {

private:

T *data;

int size;
public:

TArray(int n);
void Gather();
void Show();

3

The definition of the constructor is relatively simple. A single integer
input parameter specifies the size of the array. The actual underlying data
type of the array is defined in the main body of the program each time
you create an instance of the class. Hence, the use of the letter T.

template <class T>
TArray<T>::TArray(int n)

| 229 py

CHAPTER 6

TEMPLATE CLASSES

data = new T[n];
size = n;

}

The member function that collects the data to be stored in the array is
called Gather (), and other than the template directive as its first line, it is
normal C++ code. It uses a for loop to read in data of an as-yet-unknown
data type to be stored in the array.

template <class T>
void TArray<T>::Gather()

{
int i;
for (1 = 0; i < size; i++)
{
cout << "Enter a number : ";
cin >> data[i];
}
}

The show() function is used to display the contents of the array to the
screen. Apart from the template directive, it is just like a normal C++
member function. Note that a for loop is used to display each item in the
array to the screen.

template <class T>
void TArray<T>::Show()

{
int i;
for (1 = 0; i < size; i++)
cout << data[i] << endl;
}

The main program creates as object named x and defines the underlying
data type to be integer. The array contains five elements; therefore, an
array that can contain five integer values is created.

main()

{
TArray<int> x(5);
x.Gather();
X.Show();
return(0);

= 2:
CREATE AND USE A TEMPLATE TO REPRESENT A COMPOUND DATA TYPE

Enter
Enter
Enter
Enter
Enter
44
23
87

29
Press

How It Works

When this program is run, the underlying data type is defined to be of type
integer and the array to contain five elements. This information is used to
construct an object named x. Next, the member function Gather() is invoked,
which prompts the user to enter five integer values. Then the member function
Show() is invoked, which displays the five integer values stored in the array to
the screen. This is shown in the following screen display:

a number : 44
a number : 23
a number : 87
a number : 12
a number : 29
any key to continue

Try out the program in Listing 6.3. Try entering your own values and verify
the program operation.

Listing 6.3 A Template Class Designed to Display an Array of Any Simple
Underlying Data Type

// Template using array data types.
// T is used to specify unknown data type.

#include <iostream.h>

template <class T>

class

TArray {
private:
T *data;
int size;
public:
TArray(int n);
void Gather();
void Show();

};

template <class T>
TArray<T>::TArray(int n)

{

data = new T[n];

size

n;

4@ CHAPTER 6
TEMPLATE CLASSES

template <class T>
void TArray<T>::Gather()

{
int i;
for (1 = 0; i < size; i++)
{
cout << "Enter a number : ";
cin >> data[i];
}
}

template <class T>
void TArray<T>::Show()

{
int i;
for (1 = 0; i < size; i++)
cout << data[i] << endl;
}
main()
{
TArray<int> x(5);
x.Gather();
x.Show();
return(0);
}
Comments
If you want to create an array to hold double values, its just a question of
changing int to double in the construction of x. This is shown in the next
program fragment. All you need to do is change that single line in Listing 6.3.
main()
{
TArray<double> x(5);
x.Gather();
X.Show();
return(0);
}

If you want to increase the number of items stored in the array, simply
change the 5 to whatever value you require, say 12. Don't get too adventurous
and use huge numbers here; it will take you ages to type in lots of values.

main()
{
TArray<double> x(12);
x.Gather();
x.Show();
return(0);

o | 233 p
WRITE A TEMPLATE CLASS THAT HAS TWO UNDEFINED DATA TYPES

COMPLEXITY
INTERMEDIATE

6.4 Howdol...
Write a template class that has
two undefined data types that
can be resolved at a later time?

Problem

So far, you have dealt with templates that have a single undefined data type that
is resolved in the main program. In practice, it is common to have more than
one unknown in the template because several data types are often involved in
any single program.

Technique
The way around the problem is straightforward. The previous three How-Tos
dealt with templates that described a single simple data type and a single array
data type. The example in this How-To deals with how two simple variables can
be incorporated into a class template. Previously, the symbol T was used to
describe the unknown; now the symbols T1 and T2 are used to describe the two
unknowns.

Steps

First of all, create a template that can hold two simple data types. Define
them as T1 and T2 (see Figure 6.8).

The actual
data type of T2
is defined
later

The actual
data type of T1
is defined
later

template <class T1, class T2>

class A { Apply any simple
rivate: data type to these
p ’ data members
Tla;
T2 b;
public:
A(T1n, T2i); Apply any simple
o ' data types to this
void Show(); constructor

b

Figure 6.8 The template class definition for two
simple variables.

CHAPTER 6

TEMPLATE CLASSES

The next step is to define the constructor that can be configured to
translate into any two simple data types (see Figure 6.9).

This is a template
definition and as yet we
don’t know the two
simple data types

template <class T1, class T2>
A<T1, T2>:A(T1ln, T21i)

a=n;
b=i;

nandi
will be of a simple
data type to be
defined later

Figure 6.9 The template constructor
definition for two simple variables.

The definition of the member function show() is just like a normal C++
member function, except for the distinguishing feature of the template
directive for two undefined data types at its start (see Figure 6.10).

Thisis a
template
class

template <class T1, class T2>
void A<T1, T2>::Show()
{

cout<<a<<endl;

cout<<b<<end];

}

Figure 6.10 The template member
function definition for two simple
variables.

When the template class is called into action, you specify the two simple
data types to be used. This example uses integer and double, but any
combination is legal as long as the actual values used match the
declaration (see Figure 6.11).

o 235 py
WRITE A TEMPLATE CLASS THAT HAS TWO UNDEFINED DATA TYPES

The first parameter
is of type integer
The template A<int, double> x(5,3.5);
class
The second parameter
is of type double

Figure 6.11 Template class A configured to
hold an integer and a double.

How It Works

This is a basic example of how to get two items of data not necessarily of the
same data type into a template class. The program does nothing else except that
task. The template is set up as described earlier in this How-To. The data type
of two member variables, a and b, is designated in the main program. Here the
constructor collects the data, creates an object called x, and defines the two
member variables to be of type integer and double, respectively. The Show()
member function displays the values to the screen to prove that everything
worked. When | ran the program in Listing 6.4a | got the following output:

5
3.5
Press any key to continue

Listing 6.4a How to Define Two Variables in a Template Class and Define
Their Actual Data Type in the Main Program
// Template using two simple data types.

#include <iostream.h>

template <class T1, class T2>
class A {
private:
T1 a;
T2 by

public:
A(T1 n, T2 i);
void Show();
}s

4@ CHAPTER 6
TEMPLATE CLASSES

template <class T1, class T2>
A<T1, T2>::A(T1 n, T2 i)
{
a
b

n;
i;

}

template <class T1, class T2>
void A<T1, T2>::Show()

¢ cout << a << endl;
cout << b << endl;
}
main()
{
A<int, double> x(5,3.5);
x.Show();
return(0);
}

As an additional example, take a look at a program that finds the result of a
number raised to a power. The full code is given in Listing 6.4b. It is very
similar to Listing 6.4a with the addition of a member function called calc(). In
the main program, the template data types are configured to be double and
double; then the values 5 and 3.5 are applied to the constructor. The member
function calc () does the calculation and stores the result in the member vari-
able result. The show() member function displays the member variable
result to the screen.

When | ran my program with the stated inputs | got the following output:

279.508

Press any key to continue

Listing 6.4b A Template Class That Raises a Number of Any Simple Data Type
to a Power of Any Simple Data Type
// Template using two simple data types.

#include <iostream.h>
#include <math.h>

template <class T1, class T2>
class A {
private:
T1 a;
T2 b;
double result;

6.4

WRITE A TEMPLATE CLASS THAT HAS TWO

public:
A(T1 n, T2 i);
void Calc();
void Show();
b

template <class T1, class T2>
A<T1, T2>::A(T1 n, T2 i)
{

a=n;

b i

}

template <class T1, class T2>
void A<T1, T2>::Calc()
{

result = pow(a,b);

}

template <class T1, class T2>
void A<T1, T2>::Show()

{
cout << result << endl;
}
main()
{
A<double, double> x(5,3.5);
x.Calc();
x.Show();
return(0);
}
Comments

UNDEFINED DATA TYPES 237

You can have as many undefined data types as you want in a class template;
however, if you use too many, the code begins to get unwieldy and difficult to
use. Try to keep it simple. As a further example, the following is a template
class with four unknowns:

template <class T1, class T2, class T3, class T4>

class B {
private:
T1 a;
T2 by
T3 c;
T4 d;
double result;
public:
A(T1 n, T2 i, T3 x,
void Calc();
void Show();
}s

T4 y);

m CHAPTER 6
TEMPLATE CLASSES

A typical constructor would look like this:

template <class T1, class T2, class T3, class T4>
A<T1, T2, T3, T4>::A(T1 n, T2 i, T3 x, T4 y)

{
a = n;
b =1i;
c = X;
d=y;
}

And so the pattern continues.

COMPLEXITY
INTERMEDIATE

6.5 How dol...
Use a template class to handle a
structure?

Problem

The problem with structures is that they are a user-defined data type and
therefore have an infinite number of possible definitions. At first glance, it
seems impossible to account for every possible combination in a template.

Technique

The solution is incredibly easy. You have already seen how to create a template
to handle any simple data type. The template to handle a structure is the same
as the one that handles a simple data type. The trick lies outside the template.
The insertion operator is overloaded to handle the user-defined structure and
the template is used to send the data held in the structure to cout.

Steps

Writing the template class is straightforward; in fact, it's the same as the
one described in How-To 6.1 apart from some altered identifier names to
make it look original. The single member variable d is of a yet undefined
data type, so there are no problems there. The constructor TNotSimple
accepts a single input whose data type will be defined in the main
program. The member function show() is used to send the contents of
the member variable d to the screen.
template <class T>

class TNotSimple {
private:

6.5

USE A TEMPLATE CLASS TO HANDLE A STRUCTURE

T d;
public:
TNotSimple(T n);
void Show();

};

The tricky part here actually has very little to do with templates and can
be used in any program. The difficulty lies in overloading the insertion
operator to output a structure to the screen.

Before the insertion operator is overloaded, a specific structure must be
set up. It is called data and holds a string, an integer, and a double as its
three fields. Here is the code fragment:
struct dataf{

char name[20];
int age;
double height;
b

Now that a structure exists, an insertion overload can be defined to deal
with that specific data type. This is shown in Figure 6.12.

We are overloading
the << operator
The output data

goes to this stream

ostream& operator<<(ostream& str_out, data&q)

{

str_out is
the buffer

This is a reference
to the structure that
will be output

str_out<<g.name<<tab;]
- q ' Put the fields

str_out<<g.age<<tab; into the buffer

str_out<<q.height<<endl;
return(str_out);

Send the buffer to
the output stream

Figure 6.12 How the insertion overload works.

In the main program, a variable named man is set up and initialized.

struct data man = {"BOBBY",45,1.98};

m CHAPTER 6
TEMPLATE CLASSES

A The TnotSimple constructor is invoked and its data type defined to that
of your user-defined structure. The single input parameter is the variable
man, hence the three fields of the structure are passed into the template
class.

TNotSimple<data> x(man);

How It Works

The program in Listing 6.5a defines a structure named data. This code
overloads the insertion operator to deal with that structure. The template class
TNotSimple is very simple and is the same as the one shown in How-To 6.1. A
constructor and a member function are declared to allow manipulation of the
data. In the main program, you stamp the data type struct data on the
template class and offer the fields contained in the internal variable man as input
to the object x. To prove things have really worked, the show() function
displays the contents of the class to the screen. My output looks like this:

Structures, Template Classes And Constant Data.

BOBBY

45

1.98

Press any key to continue.

Listing 6.5a This Template Class Can Also Handle Structures Through the
Process of Overloading
// Template using single data item.

#include <iostream.h>
#define tab '\t'

struct data{
char name[20];
int age;

double height;

}s

ostream& operator << (ostream& str_out, data& q)
{
str_out << g.name << tab;
str_out << g.age << tab;
str_out << g.height << endl;
return(str_out);
}

6.5

USE A TEMPLATE CLASS TO HANDLE A STRUCTURE

template <class T>
class TNotSimple {

private:
T d;
public:
TNotSimple(T n);
void Show();
};

template <class T>
TNotSimple<T>::TNotSimple(T n)

{
}

d = n;

template <class T>
void TNotSimple<T>::Show()

{
cout << d << endl;
}
main()
{
struct data man = {"BOBBY",45,1.98};
TNotSimple<data> x(man);
x.Show();
return(0);
}

Having seen how to output a structure containing constant data from a
template class, it’s only a small step to read data into a structure at runtime.
Again, you do not need to take special provisions in the template, it5s just a
question of overloading the extraction operator to handle a specific user-defined
structure. Here is the code fragment that performs the required action:

istream& operator >> (istream& str_in, data& q)

{

};

cout << "Enter name : ";
str_in >> q.name;

cout << "Enter age : ";
str_in >> q.age;

cout << "Enter height : ";
str_in >> q.height;
return(str_in);

With this overload defined, it just a question of adding a member function
that | have called Gather (). Gather() reads in data to the member variable d,
which has been set up as the data type of the structure. When | ran my
program, | got the following output:

4@ CHAPTER 6
TEMPLATE CLASSES

Template class constructed
Enter name : MAGGIE

Enter age : 21

Enter height : 1.64

MAGGIE 21 1.64

Press any key to continue

Listing 6.5b shows the program in full.

Listing 6.5b Overloading Both the Insertion and Extraction Operator Allows a
Template to Handle Runtime Data Entry

// Template using single data item.
#include <iostream.h>
#define tab '\t'
struct dataf{
char name[20];

int age;
double height;

b

ostream& operator << (ostream& str_out, data& q)
{

str_out << g.name << tab;

str_out << g.age << tab;

str_out << g.height << endl;

return(str_out);
3
istream& operator >> (istream& str_in, data& q)
{

cout << "Enter name : ";

str_in >> g.name;

cout << "Enter age : ";

str_in >> q.age;

cout << "Enter height : ";

str_in >> q.height;

return(str_in);
};

template <class T>
class TNotSimple {
private:
T d;
public:
TNotSimple();
void Gather();
void Show();

};

6.5

USE A TEMPLATE CLASS TO HANDLE A STRUCTURE

template <class T>
TNotSimple<T>::TNotSimple ()
{
cout << "Template class constructed" << endl;

}

template <class T>
void TNotSimple<T>::Gather()
{

cin >> d;

}

template <class T>
void TNotSimple<T>::Show()

{
cout << d << endl;
}
main()
{
TNotSimple<data> x;
x.Gather();
x.Show();
return(0);
}
Comments

You are at liberty to set up a user-defined structure and pass it to a template
class as if it were a simple data type. In that respect, you can treat structures
and simple data types as the same thing.

— CHAPTER 7
THE STANDARD

TEMPLATE LIBRARY'’S
_seliwlmA NER CLASSES

THE STANDARD
TEMPLATE LIBRARY’S
CONTAINER CLASSES

How do I...

7.1 Create a container object that automatically grows
or shrinks as needed?

7.2 Read a single element of a container?

7.3 Modify a single element of a container?

7.4 Use a generic LIFO data model?

7.5 Prevent automatic reallocation of a container?
7.6 Traverse through a container’s elements?

7.7 Implement a queue data model?

A container is essentially an object that can hold other objects as its elements.
Generally, you can add an element to a container and remove an existing
element from it. A container is not confined to a specific type—it can store
objects of any kind. Such a container is said to be generic. C supports one

CHAPTER 7

——

THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

container type in the form of built-in arrays (more information on arrays can be
found in Chapter 1, “A Quick Introduction to the Language”). Other languages
support other data models. Pascal, for example, has a set type, and Lisp
supports lists (hence its name).

C++ inherited its support for arrays from C. Arrays have several properties
that, more or less, correspond to the mathematical notion of a vector:

= Arrays can store any data type.

« Arrays provide random access, meaning the time needed to access any
element is identical, regardless of the element’s position (this is not the
case in lists, for example).

Still, under some circumstances, arrays are less convenient than other data
models—for example, it is impossible to insert a new element in the middle of
an array. Furthermore, you cannot append new elements to the end of an array.
Other containers enable these operations. Conversely, a list enables you to
append new elements at its end. A special type of a list, a heterogenic list, can
hold elements of different types at the same time.

For years, programmers were implementing their own lists, queues, sets and
other container types to make up for the lack of language support. Yet
homemade containers incur significant drawbacks. They are not portable; they
are sometimes less than 100 percent bug free; their interfaces vary from one
implementer to another; they can be less than optimal in terms of runtime
performance and memory usage.

In the latest phase of the standardization of C++, Alex Stepanov, a professor
and a mathematician, suggested adding a generic library of containers and
algorithms to C++. He based his proposal on a similar generic library that he
designed for Ada a decade earlier. At that time (November 1993), the
committee was under pressure to complete the ongoing standardization process
as quickly as possible. Consequently, suggestions for language extensions were
rejected, one after another. Yet Stepanov’s proposal was too good to be forsaken.
The committee adopted it unanimously.

In essence, the proposed generic library was a collection of containers based
on mathematical data models such as vectors, queues, lists, and stacks. It also
contained a set of generic algorithms such as sort, merge, find, replace, and so
on. Because both constituents of the library, namely containers and algorithms,
were designed to be completely generic, they were implemented with templates.
To create a uniform interface, operator overloading was also used extensively.

In this chapter, you will explore the following containers of the Standard
Template Library (STL): vectors, strings, stacks, lists, and queues. Iterators and
their role in the STL framework will also be discussed. Finally, some other

CHAPTER 7

THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

7.1

7.2

7.3

7.4

7.5

containers, as well as “almost container” classes of the Standard Library, will be
discussed.

Please note that several compilers will generate warnings from some of the
sample code listings used throughout the chapter. You can be safely ignore
warnings regarding mixed unsigned/signed integers in relational expressions,
and warnings that method names are too long and have to be truncated by the
debugger. These warnings result from the specific implementation of the
Standard Template Library your compiler is using. The code will run if the
warnings are ignored.

Create a Container Object That Automatically
Grows or Shrinks as Needed

This How-To shows how to create an instance of a container object. The
demonstration starts with the most widely used container, the vector.

Read a Single Element of a Container

Two ways to read a single element are from a vector and a string. The first is
by using the overloaded subscript operator. The second is by using the member
function at (). The benefits and drawbacks of each access method will be
explained, and rules of thumb provided for choosing the appropriate one.

Modify a Single Element of a Container

The two methods for reading an element of a vector also enable the user to
modify the element’s value. This How-To will demonstrate how it is done.

Use a Generic LIFO Data Model

For some applications, a last-in-first-out (LIFO) data model is very convenient.
This How-To demonstrates how to use the stack container to simulate a
simplified exception handling mechanism.

Prevent Automatic Reallocation of a Container

The best thing about STL containers is that they free the programmer from
worrying about manual reallocation of memory after a container has consumed
its initial storage. When the container has consumed its free storage and
additional elements have to be inserted, the container reallocates itself. The
reallocation process consists of four steps. First, a new memory buffer is
allocated large enough to store the container plus additional headroom. Second,
existing elements are copied to the new location. Third, the destructors of the
elements in their previous location are invoked. Finally, the previous memory
buffer is released. Reallocation is therefore costly in terms of performance.
Moreover, it invalidates existing iterators. This How-To will demonstrate how
one can avert reallocation.

| 249 puy

250 | CHAPTER 7
THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES
7.6 Traverse Through a Container’s Elements

7.7

This How-To will explore the issue of iterators in STL. This How-To will
explain what iterators are, how they differ from built-in pointers, and how they
are used. In addition, const iterators are differentiated from plain iterators.

Implement a Queue Data Model

This How-To will demonstrate how to implement a queue using STLs generic
queue container. The properties of a queue data model and some of its
real-world applications are discussed.

COMPLEXITY

7.1

INTERMEDIATE
How do I...

Create a container object that
automatically grows or shrinks as
needed?

Problem

My program has to read an unknown number of data items into a buffer.
However, the size of the buffer has to vary at runtime to accommodate every
new item read. Because the number of items can only be known after all the
items have been read, it is impossible to allocate in advance a buffer of the
appropriate size. What | really need is a buffer that adjusts its size automatically
at runtime. It should take care of increasing its storage as required, avoid
memory leaks and overruns, and optimize memory usage.

Technique

The Standard Template Library provides several class templates that
automatically manage their memory. This How-To will show how to use STL
containers for efficient, reliable, portable, and robust applications.

Steps

Change to your base source directory and create a new subdirectory
named DYNAMIC_VECTOR.

Start your source code editor and type the following code into a file
named MAIN.CPP.

o L 251 p
GROWS/SHRINKS

CREATE A CONTAINER OBJECT THAT AUTOMATICALLY

-

~ .-

// main.cpp this program demonstrates
// how to use STL vector class
// as a dynamic buffer

#include <vector>
#include <iostream>
using namespace std;
void main()

{

vector <int> vi; //create a vector of ints
for (;;) //read numbers from a user's console until @ is input
{
int temp;
cout<<"enter a number; press @ to terminate" <<endl;
cin>>temp;
if (temp == 0) break; //exit from loop?
vi.push_back(temp); //insert int into the buffer

}

cout<< "you entered "<< vi.size() <<
0" elements into a dynamic vector" << endl;
}//end main

Save MAIN.cPP and return to the command line. Next, compile and link
MAIN.CPP.

If your compiler complains about the following #include statements:

#include <vector>
#include <iostream>

comment out (or remove) the using directive just below these #include
statements and change them to

#include <iostream.h>
#include <vector.h>

Compile and link the program.

Run the program; the output should be as follows:

enter a number; press 0 to terminate

Press 1 and then Enter. The output should be as follows:
enter a number; press 0 to terminate

Press 10 and Enter. Again, the output should be as follows:
enter a number; press 0 to terminate

Now press 0 and Enter. The output should be as follows:

you entered 2 elements into a dynamic vector

m CHAPTER 7
THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

How It Works
Let us begin by examining the first #include Statement in MAIN.CPP;

#include <vector>

vector is a class template defined in the standard <vector> header file.
Because all STL containers are declared in namespace std, a using directive is
required to instruct the compiler to resolve all subsequent references to vector
to namespace std.

The first source line in main() defines an instance of vector:

vector <int> vi;

The angle brackets after a template's name declare the particular type for
which the template is defined. The sequence of a template name and angle
brackets containing a type is termed specialization. In this case, vi is a vector
object of the specialization vector<int>. Remember that a template’s name
alone is not a type; a specialization is.

Please note the size of the vector is not specified, nor is the size of an
element in it. The object, vi, takes care of all the necessary bookkeeping
automatically.

The following for statement is an infinite loop that reads a number from the
standard input, tests whether it's not zero, and inserts it into the vector. The
loop exits when the user inputs o.

for (3;3;) //read numbers from a user's console until @ is input

The first source line inside the for statement body declares an int serving as
a temporary storage. After instructing the user to input a number and press
Enter, read the number into the temporary int, and test its value.

cin>>temp;
if (temp == 0) break; //exit from loop?

Because our loop is infinite, a zero value is the signal to exit from the loop.
As you can see, the number of the loop iterations is unlimited, as long as the
user does not enter zero.

The real action begins at the following statement:

vi.push_back(temp); //insert int into the buffer

It inserts the value of the temporary int into the vector. The member
function push_back () adds its argument at the end of its vector object. In other
words, a vector is a dynamic array that adjusts its size as needed.

The for loop could, in fact, insert as many numbers as you like into vi.
However, you didn't see any explicit operations associated with memory
management at all—the operators new and delete are never called. The secret
lies inside the vector object.

G | 253 p
CREATE A CONTAINER OBJECT THAT AUTOMATICALLY GROWS/SHRINKS

Every STL container has an embedded allocator, which is basically a memory
manager. After a vector object is instantiated, it starts its life with a default size
of a pre-allocated memory buffer. The actual initial size is implementation
dependent, but on most platforms, it is equivalent to the size of a memory
page. The vector object stores its elements in the pre-allocated buffer. When no
available room exists for additional elements, vector first tries to reallocate a
contiguous chunk of memory. However, the neighboring memory might not be
available (it can be too small, or it is already used to store other variables in the
program). In that case, a full reallocation takes place—raw memory from the
heap is allocated with a size large enough to store all the current elements plus
additional headroom. The existing vector elements are copied to the new
memory location, and the original storage is freed. Of course, the programmer
is free from that bother—those operations are automatic. Still, when
reallocation occurs frequently, the incurred performance penalty might become
unacceptable. Remember that copying elements implies construction of every
element object in its new memory location, and destruction of every element
object in the previous memory location.

Comments

This example used the specialization vector<int>. However, STL containers
and algorithms are entirely generic; that is, they are applicable to every data
type. This example could have used, for instance, a vector<string>
specialization. Furthermore, vector < vector <char> > could have been used
to represent a two-dimensional dynamic array.

To see the real strength of generic programming, lets look at a slightly
changed version of the example. This time, use vector<string> specialization.
Thus, the vector now stores string objects instead of integers. As you can see,
the interface remains the same, regardless of the specialization used.

#include <vector>
#include <iostream>
#include <string>

using namespace std;
void main()
{
vector <string> vs; //create a vector of strings
for (;;) //read numbers from a user's console until "stop" is input
{
string temp;
cout<<"enter a string and press enter; press \"stop\" to terminate" <<endl;

cin>>temp;

if (temp == "stop") break; //exit from loop?

vs.push_back(temp); //insert int into the buffer
}

cout<< "you entered "<< vs.size() <<" elements into a dynamic vector" << endl;
}//end main

m CHAPTER 7
THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

COMPLEXITY
INTERMEDIATE

7.2 Howdol...
Read a single element of a
container?

Problem

In How-To 7.1, | learned how to insert a new element into a vector. However, |
would like to read the value of an existing element from a vector.

Technique

An element in a built-in array can be accessed directly using operator [].
Vector overloads the subscript operator, [], enabling by that random access to
an element of a vector, as if it were an element of a built-in array. However,
vector has an additional method for accessing an element, in the form of the
member function at (). at() takes a subscript as an argument, and returns the
corresponding element by reference. As you are about to see, the methods differ
from one another in two crucial aspects.

Steps

Change to your base source directory and create a new subdirectory
named VECTOR_SUBSCRIPT.

Start your source code editor and type the following code into a file
named MAIN.CPP.

// this program demonstrates
// two methods of accessing
// a vector element

#include <vector>
#include <iostream>
using namespace std;
void main()
{
vector <char> vc; //create a vector of chars
for (int i = 0; 1 < 10; i++) //fill vc with 10 elements

{
char temp = 'a' + 1i; //'a' 'b' 'c' etc.
vc.push_back(temp);
cout<<"element "<<"["<< i<<"]" << " is: "<< vc[i] <<endl;

//using subscript operator
cout<<"element "<<"at"<<" "<< i << " is: "<< vc.at(i) <<endl;
//using at() member function
}

}//end main

7.2

READ A SINGLE ELEMENT OF A CONTAINER

Save MAIN.CPP; next, compile and link MAIN.CPP.

If your compiler complains about the following #include statements:
#include <vector>

#include <iostream>

comment out (or remove) the using directive just below them and
change them to read:

#include <iostream.h>

#include <vector.h>

Compile and link the program.

-

Run the program; the output should be as follows:

element [0Q] is: a
element at 0 is: a
element [1] is: b
element at 1 is: b

and so forth. The final line displays element [9], the letter j.

How It Works
Let us begin by examining the first source line inside main().

vector <char> vc; //create a vector of chars

In this line, an object named vc is declared as a vector of chars.

Next, a for loop is reiterated ten times. First, temp is initialized with the
value equivalent to the sum of 'a' + i.

for (int i = 0; i < 10; i++) //fill vc with 10 elements

{

char temp = 'a' + 1ij;

Then use the push_back () member function to store the value of temp in vc.

vc.push_back(temp);

Finally, display the element just inserted into vc using the overloaded
subscript operator in the first statement, and the at () member function in the
second one:

cout<<"element "<<"["<< i<<"]" << " is: "<< vc[i] <<endl; //using subscript
/ /operator
cout<<"element "<<"at'"<<" "<< i << " is: "<< vc.at(i) <<endl; //using at()
//member function

m CHAPTER 7
THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

Comments

Both function templates and class templates are not truly reused. Rather, the
boilerplate code is reduplicated for every specialization used. Using large
templates such as STLs containers and algorithms can lead to a significant
increase in the size of the executable, a phenomenon sometimes termed “code
bloat.”

Templates behave differently than ordinary inheritance. A member function
defined in a base class is not copied to its subclasses. Rather, it is shared.
Therefore, only a single copy exists, which is accessible to every object instance
of this class, as well as any object instance of its subclasses. The following
example demonstrates that:

class Base { public: void f();};

void Base::f()

{ cout<<"f"<endl; } } //1

class Derived : public Base {};

Base b;

Derived d;

b.f(); //executes the code defined in //1 above
d.f();//also executes the code defined in //1 above

Another important aspect of templates is their strongly typed nature. Every
distinct type also entails a distinct specialization. Thus, if you instantiate a
vector<int> and a vector<long> on a machine that represents int and long
types as a four-byte unit, you still get two distinct specializations. The same rule
applies to the use of signed and unsigned specifiers—vector<unsigned int>,
vector<signed int>, and vector<int> are completely different types, so the
compiler will expand the template code for each one of these.

The same problem arises with pointers. Stack<char *> and
stack<unsigned char *> are two distinct entities. Similarly, derived classes
and base classes are considered distinct types for template specializations. You
can imagine how easy it is to bloat your code inadvertently.

To avert—or at least minimize—unnecessary reduplication of template code,
you should try to use a common denominator type. A single vector
specialization is sufficient for short, unsigned short, int, and so on. When
you pass arguments of different integral types to a function template, try to cast
the arguments to a uniform type first. This will ensure that only a single
specialization is instantiated.

7.3

MODIFY A SINGLE ELEMENT OF A CONTAINER

COMPLEXITY

L 257 pa

INTERMEDIATE

7.3 Howdol...
Modify a single element of a
container?

Problem

I know now how to insert elements into a vector and how to read their values.
However, | need to modify the value of an existing element in a vector.

Technique
As mentioned before, a vector’s element can be accessed using operator [] or
the at () member function. Both return a non-const reference to an element of
a vector. Also, they can be used to modify the element’s value.

Steps

Change to your base source directory and create a new subdirectory
named VECTOR_MODIFICATION.

Start your source code editor and type the following code into a file
named MAIN.CPP.

// demonstrating how to modify the
// value of a vector's element

#include <vector>

#include <iostream>

#include <string>

using namespace std;

void main()

{
vector <string> vs; //instantiate a vector of string objects
string temp = "hello world"; //instantiate a string object and

//initialize it

vs.push_back(temp); //insert first element to vs

cout<<"first element using []: "<< vs[@] <<endl; //using
//subscript operator

cout<<"first element using at(): "<< vs.at(@) <<endl; //using
//at() member function

temp = "hello STL"; //assign a new value

vs[@] = temp; //modify the value of the first element of vs

cout<<"first element modified using []: "<< vs[@] <<endl;

temp = "hello vector";

vs.at(@) = temp; //assign a new value to the first element of vs
cout<<"first element modified using at(): "<< vs.at(0@) <<endl;
}//end main

m CHAPTER 7
THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

Save MAIN.CPP. Next, compile and link MAIN.CPP.

If your compiler complains about the following #include statements:

#include <vector>
#include <iostream>
#include <string>

comment out (or remove) the using directive just below these #include
statements and change them to read:

#include <vector.h>
#include <iostream.h>
#include <string.h>

Compile and link the program.

Run the program; the output should be as follows:

first element using []: hello world

first element using at(): hello world

first element modified using []: hello STL
first element modified using at(): hello vector

How It Works

Let us begin by examining the three #include statements in the beginning of
the source file:

#include <vector>
#include <iostream>
#include <string>

The first statement includes the definition of class vector. The second
includes the definitions of iostream class library and the third includes the
definition of the string class.

Now let’s look at the first source line inside main(). In this line, an object of
type vector<string> hamed vs is instantiated:

vector <string> vs;

The following line declares and initializes a string object. The initial value
stored in the string is the immortal "hello world".
string temp = "hello world";
Then, the first element is inserted into vs using the member function

push_back (). The element inserted is the string object temp that you instanti-
ated in the previous source line.

vs.push_back(temp); //insert first element

7.3

MODIFY A SINGLE ELEMENT OF A CONTAINER

The following two lines display the value of the first element of vs. The
subscript operator is used first, and then the at () member function:

cout<<"first element using []: "<< vs[0@] <<endl; //using subscript operator
cout<<"first element using at(): "<< vs.at(@) <<endl; //using at()
//member function
Having examined the first element, now change its value. The following
statement modifies the value of the temp string:

temp = "hello STL";
Next, assign a new value to the first element of vs using the overloaded

subscript and assignment operator, exactly as a new value is assigned to an
element in a built-in array:

vs[@] = temp; //modify the value of the first element of vs

To see the effect of the assignment, reexamine the value of the first element:

cout<<"first element modified using []: "<< vs[0@] <<endl;

Now modify the value of the first element again, but this time use the
member function at () instead of the overloaded subscript operator. As in the
previous modification, first assign a new value to temp:

temp = "hello vector";

The actual modification of the first member of vs takes place in the
following statement:

vs.at(0) = temp;

Again, to see the effect of the assignment, reexamine the value of the first
element. This time, use the member function at():

cout<<"first element modified using at(): "<< vs.at(@) <<endl;

Comments

You're probably asking yourself, “Why have two different access methods,
namely operator [] and the at() member function, to perform the same
operation?” Seemingly, this duality is redundant. However, it isn’t. In real-world
situations, two additional factors not addressed so far will influence your
design: performance and safety. This is where these accessing methods differ.

The overloaded [] operator was designed by the C++ Standardization
Committee to be as efficient as the subscript operator of a built-in array was.
Therefore, it does not check whether its argument actually refers to a valid
member. Using an illegal subscript yields undefined behavior. However, the lack

m CHAPTER 7
THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

of runtime checks also ensures the fastest access time (the overloaded operator
[1 is usually inline, so the overhead of a function call is avoided). When
performance is paramount, and when the code is written carefully so that only
legal subscripts are accessed, you should use the subscript operator. It is also
more readable and intuitive.

Nonetheless, runtime checks are unavoidable under some circumstances.
at() is less efficient than operator [], but it is safer because it performs range
checking. In an attempt to access an out-of-range member, it throws an
exception of type std: :out_of_range. Indeed, the samples did not have any
try blocks or catch statements surrounding every invocation of at (). This is
because the samples were carefully crafted and tested not to access an
out-of-range subscript. In large-scale projects, that cannot always guaranteed.
Sometimes the subscript argument is received from an external source: a
function, a database record, a network message, or a human operator. Keeping
track of every vector object and its current valid number of members is
impractical in large applications. In these cases, it is advisable to let the
underlying mechanism handle access violations in an automated and
well-behaved manner; for example, throw an exception rather than let the
program corrupt its memory, or crash.

When at () is used, your code has to handle a std::out_of_range
exception, as in the following example:

#include <vector>
#include <iostream>
#include <string>
using namespace std;
void main()
{
try
{
vector<string> vs; // vs has no elements currently
cout<< vs.at(@) <<endl; //oops! no elements exist in vs; exception thrown
}

catch(std::out_of_range & except)

// diagnostics and remedies for an out-of-range subscript

}
catch(...) //handle all other exception, e.g., memory exhausted
{
// do something
}

}//end main

Note that exception handling incurs runtime overhead and larger executable
size. C++ leaves you the choice.

o | 261 py
USE A GENERIC LIFO DATA MODEL

COMPLEXITY

ADVANCED

7.4 Howdol...
Use a generic LIFO data model?

Problem

I need a data model that simulates a function call chain. The first function calls
another one and so on, until the lowermost function has been called. When the
lowermost function exits, control is returned to its caller, and so forth.

Technique

A stack, also termed last-in-first-out (LIFO), is an ideal data model to
implement a function call chain. This How-To will use the STLs stack container.

A comprehensive explanation of how to implement a full-blown function call
mechanism or how to simulate an exception handling mechanism is well
beyond the scope of this book. This How-To only focuses on the data model
aspects of the implementation.

Exception handling (EH) in C++, as you will read in the following chapters,
works in a LIFO model. When an exception is thrown by a function, the EH
mechanism tries to locate a corresponding handler (a catch statement) for this
particular exception in the current function. If such a handler does not exist,
the exception is propagated to the function one level higher in the calling
chain—that is, the function from which the current one was called and the
current function is exited. This process is repeated until a handler is reached or
the program is aborted.

The highest function in the calling chain, main (), is the first element pushed
into the stack. Next is a function called from main() that is pushed into the call
stack, and so on. When an exception is thrown and no appropriate handler can
be found, the stack is popped, meaning the lowermaost function in the calling
chain is removed from the stack and control is returned to the caller. This
process is reiterated until the stack has been emptied, which in our case means
program abortion.

Steps

Change to your base source directory and create a new project named
STACK_DEMO.

CHAPTER 7

m THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

Start your source code editor and type the following code into a file
named CALLCHAIN.H:

#include <string>
#include <stack>
using namespace std;

enum status { success, failure }; // return codes
class CallChain {

private:
stack <string> st;

protected:
bool CallChain::HandlerExists(const string& excep);
void ExitCurrentScope();

public:
CallChain();
~CallChain();
status Call(const string& function);
void Throw(const string& excep);
}s

Save CALLCHAIN.H. Create a new file named CALLCHAIN.CPP under the
same project and type the following code into that file:

#include <iostream>
#include "callchain.h"
using namespace std;

CallChain::CallChain()

{
st.push("main"); // first we push main onto the stack
cout<<"pushed main; total "<<st.size()<<endl;

}
CallChain::~CallChain()
{
if (!st.empty()) //pop main if it hasn't been popped before

st.pop();

status CallChain::Call(const string& function)

{
st.push(function); //call another function
cout<<"pushed " <<function<< "; total: "<< st.size() <<endl;
if (function == "bad_func") //is it the offending one?

return failure;
return success;

7.4

USE A GENERIC L.IFO DATA MODEL

void CallChain::Throw(const string& excep)

while (!st.empty()) //unwind the stack
{
if (! HandlerExists(excep))
ExitCurrentScope(); //terminate current function
else
break; // a handler for the current exception was found
}
}

bool CallChain::HandlerExists(const string& excep)

{

return false; //in this simulation, no handlers exist

}

void CallChain::ExitCurrentScope()

{
string func = st.top(); // display the last function called

st.pop(); // remove it
cout<<"popped " << func <<"; total "<< st.size() <<endl;

}

Save CALLCHAIN.CPP. Create a new file named MAIN.CPP under the same
project of CALLCHAIN.H and type the following code into that file:

#include "callchain.h"

void main()

{

status stat = success;
CallChain chain;

stat = chain.Call("func1"); //push first function after main

if (stat != failure) //then call another one

{

stat = chain.Call("bad_func"); // call the offending function,
// which throws an exception

}
if (stat != success)
{
chain.Throw("disaster!"); //unwind stack
}

}//end main
Save MAIN.CPP and compile your project.
If your compiler complains about the following #include statements in

CALLCHAIN.H Or CALLCHAIN.CPP

#include <stack>
#include <string>
#include <iostream>

——

CHAPTER 7

THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

comment out (or remove) the using directive just below these #include
statements and change them to read:

#include <stack.h>
#include <string.h>
#include <iostream.h>

Compile and link the project.

-

Run main.exe; the output should be as follows:

pushed main; total: 1
pushed funci; total: 2
pushed bad_func; total 3
popped bad_func; total 2
popped funci1; total 1
popped main; total @

How It Works

Let us begin by examining the header file CALLCHAIN.H.

The first source line includes the definition of the class string. The second
line includes the definition of the STL stack container. The following using
directive instructs the compiler to resolve all references to namespace std.

In the following source line
enum status { success, failure };
an enum type named status is defined. It is used to return a success or failure
code from the member functions defined in callchain class. Class CallChain

itself is declared in the following source line. This class is used to simulate a
simplified mechanism of a function call chain.

class CallChain {

Next, declare the first class member named st as a private member:

stack <string> st;

st is an object of type stack <string>. st holds string elements. A
string object is sued to denote a function. That is, the entities are the names of
the functions. You could have chosen a different method to represent a
function, say a pointer, or a class. However, string is a simple and clear
representation for the purposes of this How-To.

Next, declare two protected member functions:
protected:

bool CallChain::HandlerExists(const string& excep);
void ExitCurrentScope();

7.4

USE A GENERIC L.IFO DATA MODEL

The first member function is used to examine whether a handler for the
current exception exists in the current scope. In this case, the member function
is a stub, which always returns false. The second member function performs a
forced exit from the current scope. In other words, it pops the current function
from the stack. These member functions are declared protected because they
are more of helper functions used by other members of the class; they are not
supposed to be invoked directly.

The interface of a class consists of its public members. callchain’s interface
is specified in the following source lines.

First, declare a constructor:
CallChain();

A destructor comes next:
~CallChain();

The call member function simulates a function call, which is in fact a push
operation performed on the stack.

status Call(const string& function);

Finally, the member function Throw performs a complete stack unwinding; it
performs iterative push operations until the stack is empty. This is equivalent to
throwing an exception that has no handler—the program is aborted.

void Throw(const string& excep);

Now you have a basic idea of how the exception handling mechanism
works, and how it relates to the stack data model. Lets take a look at
CALLCHAIN.CPP. This file contains the implementation of the callcChain class.
First, include the <iostream> header. The next header file is callchain.h,
which contains the declaration of the class callchain, as you just saw. A using
directive is necessary for the compiler to resolve accurately the names of
<iostream>

Let's examine the constructor of callChain:

CallChain::CallChain()
{

st.push("main");
cout<<"pushed main; total "<<st.size()<<endl;

}

The first statement in the constructor performs a push operation. That is, it
pushes an element onto our stack. It pushes an argument of type string, which
is the expected type for the specialization stack<string> you used. As in a
vector, every push operation applied to a stack inserts a new member into a
position higher than the previous one. In this case, the constructor pushes the
first element onto the st. Thus, a callchain object begins its life with a stack
that has one element—main.

m CHAPTER 7
THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

The destructor performs the opposite action; that is, it pops the stack, unless
it is already empty. Remember that popping an empty stack is an error, so
stack::empty () is called first to check whether the stack is empty.

CallChain::~CallChain()

{
if (!st.empty())
st.pop();

The member function call calls a function. It receives the function name as
its argument, and pushes it on the stack.

status CallChain::Call(const string& function)

{
st.push(function);
cout<<"pushed " <<function<< "; total: "<< st.size() <<endl;
if (function == "bad_func")

return failure;
return success;

However, one of the functions called is an offender—it throws an exception
for which no handler exists. This function is identified by its name: bad_func.
The call member function checks whether the function it has just pushed is
the offending function by comparing the function's name. If this function
throws an exception, call returns a failure value, which indicates that an
exception has occurred.

The Throw member function, as said before, performs stack unwinding; that
is, it empties the stack by recurrent pop operations, each of these removing the
last element from the stack until the stack is empty:

void CallChain::Throw(const string& excep)

{
while (!st.empty())

{
if (! HandlerExists(excep))
ExitCurrentScope();
else
break; // a handler for the current exception was found

The HandlerExists member function looks for an appropriate handler for
the thrown exception. Because a full-blown exception handling mechanism is
not implemented, the member function always returns false. (If it returned
true, it would mean that the current exception was caught and handled, so
there was no need to unwind the stack.)

bool CallChain::HandlerExists(const string& excep)

{

return false;

}

7.4

USE A GENERIC L.IFO DATA MODEL

ExitCurrentScope performs a forced function exit. It terminates the current
function by pooping it from the stack. But before a function is popped from the
stack, take its name by calling the stack: : top member function. Top () returns
a reference to the element at the highest position in the stack (that is, the one
pushed latest). size() is another member function that returns the number of
elements currently stored in a stack. size () is used to display the increasing
number of functions pushed on the stack, and during stack unwinding, it is
used to display the decreasing number of elements.

void CallChain::ExitCurrentScope()

{

string func = st.top();

st.pop();

cout<<"popped " << func <<"; total "<< st.size() <<endl;
}

Now let’s look at MAIN.CPP. First, include the header file callchain.h that
contains the declaration of class callchain, as shown earlier.

#include "callchain.h"
The first statement in main declares a variable of type status and initializes
it to success

status stat = success;

An object of type callchain is instantiated with a name chain.

CallChain chain;

chain simulates function calls. As you remember, one function was already
called by the constructor, main. Now call another function named func1 from
main and check the returned status.

stat = chain.Call("func1"); // call another function from main
if (stat != failure)

Because func1 did not throw an exception, as the status returned from call
indicates, you can now call another function from func1

{

stat = chain.Call("bad_func"); //now call thrower

}

As you might guess from its name, bad_func threw an exception, as the
returned status indicates. Because you have no handler for the thrown
exception, you have to perform stack unwinding. This is done by calling the
member function Throw:

chain.Throw("disaster!"); //unwind stack

CHAPTER 7

——

THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

Comments

The STL stack container is generic. That is, it applies to any data type. This
example used it with string for the sake of brevity; however, you can use it to
model a LIFO with built-in types, objects, pointers, and so on.

COMPLEXITY

7.5

INTERMEDIATE
How do I...

Prevent automatic reallocation of
a container?

Problem

I'm using a container that has to meet strict performance demands. In peak
times, it can store as many as thousands of objects within minutes. However,
the default reallocation scheme is unsatisfactory because my container has to
reallocate itself frequently. The reallocation process imposes significant runtime
overhead: the existing elements have to be copied to a new memory location.
Copying implies an invocation of every element’s destructor as well as a
reconstruction every element in its new location. Is there a way to optimize my
container’s performance?

Technique

The memory allocation scheme of STL containers has to address two conflicting
demands. On the one hand, a container should not pre-allocate large amounts
of memory—it might impair system performance. On the other hand, it is
inefficient to let a container reallocate memory whenever it stores a few more
elements. The allocation strategy has to walk a thin line. However, in cases in
which you can estimate in advance how many elements the container will have
to store, you can force it to pre-allocate sufficient amount of memory and the
recurrent reallocation process will be avoided.

Imagine a mail server of some Internet service provider. The server is almost
idle at 4:00 AM in the morning. However, at 9:00 AM it has to transfer
thousands of emails every minute. The incoming emails are first stored in a
vector before they are routed to other mail servers across the Web. Letting our
vector reallocate itself, little by little, with every few dozen emails is a recipe for
a traffic bottleneck. Fortunately, you know in advance that 9:00-17:00 are peak
hours, so you can avoid reallocation by calling the member function
vector::reserve(). Reserve(n) ensures that its container reserves sufficient
free memory for at least at least n more elements.

7.5

PREVENT AUTOMATIC REALLOCATION OF A CONTAINER

Steps

Change to your base source directory and create a new subdirectory
named PRE_ALLOC.

Start your source code editor and type the following code into a file
named MAILSERVER.H.

#include <vector>
using namespace std;

struct message { char text[1000];}; //a simplified representation
//of an email message

class MailServer {
public:

bool RushHour() const;
bool MoreMessages() const;
message& GetNewMsg() const;

b

Save MAILSERVER.H. Create a new file with the name MAILSERVER.CPP
and type the following code into it:

#include <iostream>
#include "mailserver.h"
using namespace std;

bool MailServer::RushHour() const // is the current time
// considered peak-time?
{
bool rush = true;
return rush;

}

bool MailServer::MoreMessages() const //are there more incoming
/ /messages?
{
bool more = true;
return more;

}

message& MailServer::GetNewMsg() const // store an incoming
// message
{
static message msg; //static object is instantiated only once
return msg;

}

269 py

CHAPTER 7

m THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

[6]

Save MAILSERVER.CPP. Create a new file with the name MAIN.cPP and
type the following code into it:

// demonstarting how to
// avoid recurrent memory
// reallocations of vector

#include <iostream>
#include "mailserver.h"

using namespace std;

void main()

{

MailServer server;

vector <message> vm; //emails transmitted from the server are
//stored here

if (server.RushHour())
vm.reserve(5000); //make room for at least 5000 more messages
//without reallocation
while (server.MoreMessages())

{

static int count =0; // control how many times this loop

/| executes
vm.push_back(server.GetNewMsg()); //insert a new email into
[/vm
count++;
if (count > 5000)
break; //loop exited after 5000 iterations

}//while

}// end main
Save MAIN.cPP and compile your project.

If your compiler complains about the following #include statement in
CALLCHAIN.H Or CALLCHAIN.CPP:

#include <vector>

comment out (or remove) the using directive just below the #include
statement and change them to read:

#include <vector.h>
Compile and link the project.

Run main.exe

7.5

PREVENT AUTOMATIC REALLOCATION OF A CONTAINER

How It Works

Let’s look at MAILSERVER.H. The first source line includes STL <vector>
definitions. Next, a struct named message is declared that represents a typical
email message. The class MailServer is also declared. This class represents a
rudimentary mail server. It has four public member functions and no data
members, constructors, or destructors.

For a more detailed description of each member function, let’s look at
MAILSERVER.CPP. The first source line includes the declaration of class
MailServer

#include "mailserver.h"

The following lines define MailServer's member functions. The member
function RushHour returns true if the current time falls between 9:00 and
17:00. To simplify things, use a stub that always returns true to avoid time
calculations that are impertinent to this discussion. The reason a local variable
is used and initialized (rather than simply returning a literal true) is to enable
you to change its value from a debugger and test the resulting effect. RushHour
is declared const because it does not change its object’ state.

bool MailServer::RushHour() const

{

bool rush = true;
return rush;

}

MoreMessages is the second member function of MailServer. Again, a stub
is used here that always returns true. MoreMessages checks whether new
messages are coming. In real-world conditions, it would probe the shared
memory or a communication port.

bool MailServer::MoreMessages() const

{
bool more = true;
return more;

}

In case more messages are on the way, the member function GetNewMessage
is invoked. In this case, hold a static instance of a message struct, and return
it by reference. Static variables are instantiated and initialized only once during
a program’s execution, so they are more efficient than local variables that are
instantiated anew every time. The returned message is stored in the container,
as you will immediately see in MAIN.CPP.

message& MailServer::GetNewMsg() const

{
static message msg;
return msg;

}

L 271

m CHAPTER 7
THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

Lets look at MAIN.cPP. The first source line inside main() instantiates
server, an object of type MailServer.

MailServer server;

In the following line, a vector object named vm is instantiated, whose type is
vector<message>. The container vm will store the email messages coming from
the server object.

vector <message> vm;

The next if statement queries server whether the current time is
considered rush hour. If it is, vm must be prepared to handle the traffic load by
reserving enough room for at least 5000 more messages.

if (server.RushHour())
vm.reserve(5000) ;

Remember that vector: : reserve takes the number of objects as an
argument, not the number of bytes. Thus, vm has to reserve memory in the size
of 5000 * sizeof (message) bytes, which is nearly 5MB.

The while condition is, in fact, an infinite loop because it tests a condition
that is always true (as you might recall, MoreMessages always returns true).
Exit from the loop by using a static int, which is incremented with every
iteration, until the loop has executed 5000 times.

while (server.MoreMessages())
{
static int count =0;

The message is retrieved from the server, and stored in vm. For that purpose,
invoke push_back with the message returned from GetNewMsg() as an
argument. Next, increment count, the loop counter, and test whether the loop
has already executed 5000 times. If it has, break from the loop. Otherwise, the
loop executes once more.

vm.push_back(server.GetNewMsg());
count++;
if (count > 5000)
break;
}//while
}// end main

Comments
In this example, you have to adjust a vector's memory according to need. When
you have to use a vector that is always required to hold large amounts of
memory—for example, a vector that holds all of the records of a large database
table—you can use a different technique.

7.6

TRAVERSE THROUGH A CONTAINER’S ELEMENTS

Up until now, you have instantiated vectors with their default constructor.
However, vector has another constructor that takes as an argument the initial
number of elements for which storage has to be reserved. In other words, you
could have instantiated vm like this:

vector <message> vm(5000); // prepare enough room for 5000 messages initially

But that would be a waste of the system’s resources if it wasn't working
during rush hours.

You are probably wondering why you should bother so much about avoiding
reallocations when a vector can do the necessary bookkeeping automatically.
The motive in this How-To was to optimize performance and to ensure the
highest responsiveness. Nevertheless, there is another reason for avoiding
reallocations, which is discussed in length in How-To 7.6.

COMPLEXITY

7.6

INTERMEDIATE
How do I...

Traverse through a container’s
elements?

Problem

Up until now, | have accessed a single element at a time. However, | need a
convenient method for accessing all the elements in a container so | can display
them on the screen.

Technique

Pointers are used when traversing built-in arrays. For example, the standard C
routines, strcpy and strcmp, Use a pointer to char that points to the first
element of the char array. This pointer is incremented to move to the next char
in the array.

STL by its nature is a generic framework. Genericity means type
independence. Built-in pointers, on the other hand, narrow the choice of
supported types. For example, a pointer on most platforms is represented as a
32-bit integer. This size is insufficient for traversing a container larger than
2GB. STL, therefore, uses iterators rather than bare pointers.

Iterators can be thought of as generic pointers. They behave much like
pointers. You can dereference an iterator to examine the element it points to.
You can use the operators ++ and - - with an iterator to move one position
ahead or back in a container, and so on. Yet, the underlying representation of
an iterator needn't be a pointer.

CHAPTER 7

——

THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

The following example demonstrates how to use iterators to access a
container’s elements. This example will use string as its container. string
resembles a vector<char>. It shares many common features with vector.
However, vector is generic, whereas string is only applicable to char. string
and vector are probably the most widely used STL containers. The sample
program will show how to create a string object, initialize it, and iterate
through its elements with iterators.

Steps

Change to your base source directory and create a new subdirectory
named STL_STRING.

Start your source code editor and type the following code into a file
named MAIN.CPP:

#include <string>
using namespace std;

// demonstrating iterators
#include <iostream>
#include <string>
using namespace std;
void main()
{
string str = "hello world";
string::const_iterator p = str.begin(); //create and initialize
//a const iterator
while (p != str.end())
{
cout<< *p <<endl;
p++; //prpceed to the next element
}
}

Save MAIN.cPP and compile your project.

If your compiler complains about the following #include statements in
MAIN.CPP:
#include <vector>

#include <string>

comment out (or remove) the using directive just below these #include
statements and change them to read:

#include <vector.h>
#include <string.h>

7.6

TRAVERSE THROUGH A CONTAINER’S ELEMENTS

Compile and link main.

Run main.exe. The output should look like this:
h

O K+ @

O3 0 =

How It Works

The first source line in MAIN.CPP includes the definition of the iostream class
library. Next, the definition of string class is included. string is declared in
namespace std, therefore, the third source line contains a using directive to
instruct the compiler to look up all references to string in std:

#include <iostream>
#include <string>
using namespace std;

The first source line inside main () instantiates an object, str, of type
string, and initializes it with a most original value, "hello world".

string str = "hello world";

The following source line introduces us to the notion of STL iterators. Lets
analyze it in detail:

string::const_iterator p = str.begin();

The sequence string::const_iterator is a type name. Class string, like
every container in STL, contains several types of iterators that are used to
traverse its elements. Note that when you define an ordinary pointer, you have
to specify to which type of object the pointer points; for example, char * is a
pointer to char. In STL, you use a specialization followed by the scope
resolution operator, : :, to indicate the specialization to which the iterator can
be applied. Please note that string is a specialization; string is a shorthand for
the following unwieldy specialization:

basic_string<char, char_traits<char>, allocator<char> >
Whew! Fortunately, this arcane syntax is well hidden by a friendlier typedef

named string. In other words, string is a char-specialized version of the
basic_string container.

m CHAPTER 7
THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

An ordinary pointer can be used to modify the object to which it points.
When a pointer is not supposed to modify its object, declare it as pointing to a
const object. For example:

int strcmp (const char *, const char *); //the arguments of strcmp
//may not be modified

The const specifier guarantees the pointer is not used to modify the pointed
object. The pointer itself, however, can be modified—it can be assigned a new
value, incremented, and so on. Likewise, there are two basic types of iterators:
const_iterator and plain iterator. The rule of thumb is to use a
const_iterator unless you have a good reason to use a plain iterator. This
example displays the contents of a string without modifying its elements.
Therefore, a const_iterator is used.

The string::const_iterator is named p. It is initialized to point to the
first element of str. The member function begin (), which is a member of
other STL containers, as you will see next. returns the address of the first
element in its object. Remember that the value returned from begin() is not
the first element itself, but its address. To make this distinction clearer, compare
it to built-in arrays:

char car[10];
const char * p = &car[0]; //p gets the address of the first array
//element, not the element itself

Now that you have created a const_iterator pointing at the first element of
str, you can use it to access all the other elements thereof. For that purpose,
use a while loop. The loop checks in each iteration whether you have reached
the last element of the container by invoking the member function
string::end():

while (p != str.end())

The loop body consists of two operations. First, the current element is
displayed. As you can see, in order to access the element the iterator must be
dereferenced, as you would dereference an ordinary pointer. The trick here is
that all STL iterators overload operator *, which enables you to use pointer
syntax. Nifty, isn't it?

cout<< *p <<endl;

The following statement in the loop body increments p using the overloaded
++ operator. The effect of which, you can guess, is to move p to the next
element of str.

p++;

Of course, you could have combined these separate operations in a single
statement, like this:

7.6

TRAVERSE THROUGH A CONTAINER’S ELEMENTS

cout<< *p++ <<endl;

but it’s less readable.

Comments

When you want to modify elements of a container, you need to use non-const
iterators. The following example demonstrates how it is actually done.

In the following program, use 1ist as your container. The STL 1ist class
template is defined in the header <1ist>. The specialization 1ist<double> is
used to instantiate an object named salaries. Next, three elements of type
double are inserted to salaries.

Imagine salaries represents a payroll. Now suppose you want to raise by
15% the salaries of all employees. In order to do that, you need to traverse
through the elements currently stored in salaries and modify each one. For
that purpose, use a plain iterator.

#include <iostream>
#include <list>
using namespace std;

void main()

{

list <double> salaries; // a payroll

salaries.push_back(5000.00);

salaries.push_back(4500.00);

salaries.push_back(1333.33);

list<double>::iterator p = salaries.begin(); //point to the first element

while (p != salaries.end())
{
cout<<"salary before a raise: "<< *p <<endl;
*p = *p * 1.15; //add 15 percent to the existing rate
cout<<"salary after a 15% raise: "<< *p <<endl;
p++; //proceed to the next salary

}

}// main

Our first step is to create a suitable iterator. This iterator is intended to
modify the elements; therefore, you have to use an ordinary iterator rather than
a const iterator. Our iterator is defined in the following line:

list<double>::iterator p = salaries.begin();

p is initialized with the address of the first element in the list, which is the
value returned from begin(). Next, define a while loop that traverses through
the elements of salaries.

while (p != salaries.end())

{

cout<<"salary before a raise: "<< *p <<endl;

CHAPTER 7

———

THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

* = * * .
p p 1.15;
cout<<"salary after a 15% raise: "<< *p <<endl;

pH+;

The first statement inside the loop displays the element to which p currently
points. Next, change the element just displayed. Increase the element by 15%.
Remember that you have to dereference the iterator to obtain the element. After
changing the element, display it once more. Finally, increment the iterator to
point to the next element in salaries. The loop is reiterated as long as p does
not reach the last element of salaries.

You might have noticed something suspicious here: The loop is reiterated as
long as the final element hasn't been reached. Still, when this program is run
you will notice that all of the elements in salaries have been
modified—including the last one. How can it be? Here is the secret. The
member function end() does not really return the position of the last element,
but one position past the last element. Surprising as it might seem, you can find
similar behavior in C strings. A null character is always appended one position
past the last position of the char array. The null character marks the boundary
of the string. A similar trick is applied in STL containers. Every container
automatically appends another element one position after the last one. This
special element is equivalent to the null character in C strings, or the EOF
marker at the end of a file. Thus, our iterator p does reach the final element in
the loop.

As noted before, besides the incurred performance penalty, reallocation has
another undesirable side effect. When a container reallocates its elements, their
addresses change correspondingly, invalidating existing iterators. Therefore, you
have to reassign the iterators’ values by invoking the appropriate member
function once more. Using an invalid iterator yields undefined
behavior—exactly as if you were using a pointer with the address of a deleted
object. Because the reallocation process is automatic, the programmer has no
way of knowing when it takes place, and when an iterator becomes invalid. By
forestalling reallocation, not only do you get enhanced performance, but you
also eliminate the chance of dangling iterators.

COMPLEXITY

7.7

INTERMEDIATE
How do I...

Implement a queue data model?

Problem

I need a container that implements the first-in-first-out (FIFO) data model.
FIFO is a queue of elements. As opposed to a stack, the first element inserted
into a queue is located at the topmost position, whereas the last element

7.7

IMPLEMENT A QUEUE DATA MODEL

inserted is located at the bottom. When a pop operation is performed, the
element at the topmost position (which was the first to be inserted) is removed
from the queue, and the element located one position lower is now at the top.
Remember that the terms queue and FIFO mean the same thing, so they are
used here interchangeably.

Technique

In this example, you will see how to use STLS queue container to implement a
FIFO data model.

Steps

Change to your base source directory and create a new subdirectory
named QUEUE.

Start your source code editor and type the following code into a file
named MAIN.CPP.

// demonstrating STL's queue
#include <iostream>

#include <queue>

using namespace std;

void main()

{

queue <int> iq; //instantiate a queue of ints

ig.push(93); //insert the first element, it is the top-most one
iqg.push(250);

ig.push(25);

ig.push(10); //last element inserted is located at the bottom

cout<<"currently there are "<< ig.size() << " elements" << endl;

while (!iqg.empty())

{
cout <<"the last element is: "<< iq.front() << endl;
//front returns the top-most element
ig.pop(); //remove the top-most element
}
}

Save MAIN.CPP and compile your project.
If your compiler complains about the following #include statements in
MAIN.CPP:

#include <queue>
#include <iostream>

m CHAPTER 7
THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

comment out (or remove) the using directive just below these #include
statements and change them to read:

#include <queue.h>
#include <iostream.h>

Compile and link main.

ol

Run main.exe. The output should look like this:

currently there are 4 elements
the last element is: 93
the last element is: 250
the last element is: 25
the last element is: 10

How It Works

Let’s examine the program carefully. The first source line in MAIN.CPP includes
the definition of the iostream class library. Next, the definition of STLs queue
class template is included. Both iostream and queue are declared in namespace
std. The following using directive instructs the compiler where it should look
for the definitions of iostream and queue.

#include <iostream>
#include <queue>
using namespace std;

The first statement inside main () declares iq as a queue of ints.

void main()

{

queue <int> iq;
The following statement inserts the first element into iq. Recall that the first
element always remains at the top of the queue until it is popped.
ig.push(93);

The next three statements insert additional elements into ig. Each element
occupies one position below the previously inserted one.

ig.push(250);
ig.push(25);
ig.push(10); //last element inserted is located at the bottom

The following statement displays how many elements currently exist in iq.
Again, use the member function size () for that purpose.

cout<<"currently there are "<< iqg.size() << " elements" << endl;

7.7

IMPLEMENT A QUEUE DATA MODEL

Now define a loop that displays the topmost element in iqg, and then
removes it until iq has been emptied. The following while statement checks
whether iq contains more elements first. Recall that popping an empty queue is
an error.

while (!iqg.empty())
{

cout <<"the last element is: "<< iq.front() << endl; //front returns
//the top-most element
iq.pop(); //remove the top-most element

}
}

Comments

The FIFO, or queue, data model is heavily used in task-oriented programming,
such as a print manager. Usually, a single printer serves several users. Because
the printer can handle only a single job at a time, the other print jobs have to
wait their turn. This is the role of a print manager—it stores incoming print
jobs, sends them one-by-one to the printer, and waits for a notification that the
printer has completed the current job. Only when the printer is free will the
print manager send a new job to it. Every print job has a unique ID assigned to
it by the print manager. The waiting jobs are stored in a queue. When the print
manager receives a completion notification from the printer, it deletes this job
from the queue. A print manager uses a queue to hold the pending jobs. The
first job inserted to the queue is also the first to be printed and removed

from it.

Implementing a print manager requires knowledge of event-driven
programming and serial port communication. Therefore, it is left as an exercise
for readers who are experienced in such programming tasks.

Summary

In this chapter, you have learned how to use STL containers. First, the
theoretical aspects of generic programming were discussed. Next, you
implemented various data models: vector, string, stack, list, and queue. As you
might have noticed, they share some common features such as automatic
memory management, the notion of iterators that behave like pointers, begin()
and end () member functions, and more. Still, every container is an abstraction
of a distinct data model. The rich collection of STL containers enables you to
pick up the most suitable container that fits your programming tasks. STL
containers have several advantages over homemade ones:

Portability. All standard conforming C++ implementations supply them.

Performance. STL containers were designed and implemented to meet
strict efficiency demands.

CHAPTER 7

——— .

THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

Reliability. These containers are already debugged and tested.
Uniformity. STL ensures standard names and conventions.

Genericity. STL containers can be used with every data type and object.

The Standard Library has a few more “almost containers.” These template
classes behave in many ways like ordinary containers: they have automatic
memory management, they have iterators, and they have member functions
such as begin() and end (). Still, they are not considered “first class citizens” in
the STL catalog because they are not generic. You saw an example of that in the
shape of string, which is similar to vector but is confined to the char data
type. valarray is another “almost container” that was not discussed. It also
resembles vector, albeit with a strong bias toward numerical and mathematical
computations. The third class in this category is bitset. Bitset is a container
designed to store and manipulate bits in an efficient way. These “almost
containers” have a limited use for general purposes, except for string.

STL has a few more containers that were not discussed here. These
containers include associative arrays, sets, and multisets.

An associative array is an array whose indexes needn't be integers. The map<>
container is an example of this. It can take any data type as a subscript for its
elements. A map element is a pair consisting of a key and a value. For example,
a URL serving as a key and a corresponding HTML page as its value. However,
associative array elements have to meet other requirements so that they can be
sorted and compared to one another. This is usually achieved by defining a
functor, or a function object.

Multimap<> is a map that can hold nonunique keys. Likewise, multiset<> is
a set that can hold nonunique elements. Readers who wish to learn more about
these advanced data models are referred to the following titles:

STL Tutorial and Reference Guide: C++ Programming with the Standard Template
Library, David R. Musser and Atul Saini. Reading, MA: Addison Wesley
Longman (1996). (ISBN: 0201633981)

The C++ Programming Language, 3rd ed., Bjarne Stroustrup. Reading, MA:
Addison Wesley Longman (1997). (ISBN: 0201889544)

PART 11|
ALGORITHMS

— CHAPTER 8
THE STANDARD C

LIBRARY’'S INCLUDED
A NR \V/

THE STANDARD C
LIBRARY'S INCLUDED
ALGORITHMS

How do I...
8.1 Sort an array?
8.2 Find an element in an array?
8.3 Locate an element in a nonsorted array?
8.4 Choose between _1find and _lsearch?
8.5 Generate a sequence of random numbers?

This chapter surveys the algorithms of the Standard C Library. These algorithms
enable you to sort an array and find an element in it. In addition, the random
number generation functions of the Standard C Library are discussed.

C++ provides its own set of generic algorithms. However, there are at least
three reasons why a C++ programmer should be familiar with C algorithms.

e Legacy code. Familiarity with these algorithms is needed to maintain
legacy C code.

288

CHAPTER 8

8.1

THE STANDARD C LIBRARY’S INCLUDED ALGORITHMS

= Efficiency. You cannot apply STL algorithms to data items that are not
stored in a container. Rather, you have to store these elements in an STL
container first, and only then can you sort these elements. This is a costly
process in terms of runtime overhead.

« Applicability to non-OO data types. The default == and < operations are
either not defined or meaningless when applied to aggregates (plain
structs or built-in arrays). In order to apply an STL algorithm to aggre-
gates, you have to wrap every data member by an object that defines
meaningful operations for == and < operators. It's tedious and incurs a
considerable performance overhead, which might be unacceptable, or at
least unnecessary, under some circumstances.

This chapter adheres to pure C. The source files used here contain pure C
code, so they can be compiled and linked with either a C or C++ compiler. The
aim is to enable the source files to compile in C as well as in C++ without
having to modify them. Some of the writing conventions in this chapter include

« All comments are C-style comments, such as /* comment */.
e All variables are declared at the beginning of a function.

e The C-style cast operator is used exclusively, as in (1ong) var. The new
cast operators of C++, static_cast<>, reinterpret_cast<>,
const_cast<>, and dynamic_cast<> are not supported in C.

e Classes and objects are not used.

e The <stdio.h> family of functions, such as printf, is used to perform
I/O operations.

A final remark about standard header files—the new convention of C++ for
standard header files, such as <cstdio> and <iostream>, is not supported in C.
Therefore, this chapter uses the traditional header file notation, #include
<stdio.h>.

Sort an Array

This How-To shows how to sort an array of any data type. The How-To starts
with an example of an array of integers, showing how to use the function gsort
to sort an array. Following that is a detailed explanation of how the callback
routine of gsort has to be defined. This topic leads to a thorough grounding in
pointers to functions and their properties. The How-To shows how pointers to
functions differ from data pointers, and demonstrates how to define, assign, and
use them. Next is a demonstration of how to use gsort with a different data
type, char *. The aim is to show the generic nature of gsort and C generic
functions in general.

8.1

8.2

8.3

8.4

8.5

SORT AN ARRAY

Find an Element in an Array

This How-To explains how to locate an element in an array by using the
algorithm bsearch. It demonstrates the generic nature of bsearch and explains
how to use it. Finally, the How-To discusses the restrictions on bsearch usage.

Locate an Element in a Nonsorted Array

bsearch is applicable only to sorted arrays. However, it is not always desirable
or even possible to sort an array before you try to find an element in it. Instead
of bsearch, you can use the functions _1search and _1find to locate an
element in a nonsorted array. This part shows how to use _1find to locate an
element in an array that has not been sorted.

Choose Between _1find and _lsearch

This part explains the differences between these functions. The How-To also
discusses their efficiency.

Generate a Sequence of Random Numbers

This How-To shows how to generate a sequence of random numbers using the
Standard C Library’s functions. The How-To starts with the function rand and
demonstrates how to use it. Then it shows how to use rand’s counterpart,
srand, to ensure a unique random sequence on every run.

COMPLEXITY

8.1

INTERMEDIATE
How do I...

Sort an array?

Problem

I have an array of integers that | need to sort. How do I sort it in plain C?

Technique

Standard C has a generic algorithm, gsort, for this purpose. Because C does
not have built-in constructs for generic programming such as templates and
polymorphism, generic functions like gsort make extensive use of void
pointers and function callbacks. The following demonstrates several examples
and analyzes them systematically.

CHAPTER 8

THE

Steps

STANDARD C LIBRARY’S INCLUDED ALGORITHMS

Change to your base source directory and create a new subdirectory
named C_SORT.

Start your source code editor and type the following code into a file
named COMPARE . H:

#ifndef COMPARE_H
#define COMPARE_H

int __cdecl compare (const void* pfirst, const void * psecond);

#endif

Save COMPARE . H. Type the following code into a new file named
COMPARE . CPP:

int __cdecl compare (const void* pfirst, const void * psecond)

{
const int first = * ((const int *) pfirst);
/* dereference first arg */
const int second = *((const int*) psecond);
/* dereference second arg */

return (first - second);

}

Save COMPARE . CPP. Type the following code into a new file named
MAIN.CPP:

#include <stdlib.h>
#include <stdio.h>
#include "compare.h"

void main()

{
int iarr[10] = {9, 83, 100, 1, 645, -7645, 4, 23, 543, 9};
int j = 0; /* loop counter */

for(; j < 10; j++) /* display array before sorting */
printf ("element %d of iarr is: %d\n", j, iarr[j]);

/* sort iarr using gsort function */

gsort(iarr, /* address of array's beginning */
10, /* number of elements in array */
sizeof (int), /* sizeof each element */
compare);

/* pointer to user-defined comparison function */

printf ("sorted\n\n");
j = 0; /* reset loop counter */

for(; j < 10; j++) /* display sorted array */
printf ("element %d of iarr is: %d\n", j, iarr[j]);

8.1

SORT AN ARRAY

Save MAIN.cPP. Compile MAIN.CPP and COMPARE.CPP, and link MAIN.CPP.

If you are not working in a Windows environment, your compiler might
complain about the __cdec1 specifier in the prototype and the definition
of the function compare. In that case, comment out or remove the
specifier __cdecl from COMPARE.H and COMPARE . CPP.

I Run the program; the output should be as follows:

element @ of iarr is: 9

element 1 of iarr is: 83
element 2 of iarr is: 100
element 3 of iarr is: 1
element 4 of iarr is: 645
element 5 of iarr is: -7545
element 6 of iarr is: 4
element 7 of iarr is: 23
element 8 of iarr is: 543
element 9 of iarr is: 9
sorted
element @ of iarr is: -7545
element 1 of iarr is: 1
element 2 of iarr is: 4
element 3 of iarr is: 9
element 4 of iarr is: 9
element 5 of iarr is: 23
element 6 of iarr is: 83
element 7 of iarr is: 100
element 8 of iarr is: 543
element 9 of iarr is: 645
How It Works

Let’s look at MAIN.cPP first. The first source line includes the declarations and

definitions of the C Standard Library. The function gsort is also declared in it.
The second source line includes the prototype of the function printf () that is
used in this program. The third line includes the prototype of compare, which
is discussed in detail soon.

#include <stdlib.h>
#include <stdio.h>
#include "compare.h"

The first source line inside the body of main () defines an array of 10
integers. The array is initialized with 10 random values. The value 9 appears
twice, and a negative value appears to test the robustness of gsort.

int iarr[10] = {9, 83, 100, 1, 645, -7645, 4, 23, 543, 9};
Next, a loop control variable is defined and initialized to o.

int j = 0; /* loop counter */

4@ CHAPTER 8
THE STANDARD C LIBRARY’S INCLUDED ALGORITHMS

The following for statement displays the elements of iarr before sorting.

for(; j < 10; j++) /* display array before sorting */
printf ("element %d of iarr is: %d\n", j, iarr[j]);

After the elements of iarr are displayed, they are sorted using gsort:

qgqsort(iarr,
10,
sizeof (int),
compare);

gsort takes four arguments. Let’s examine the role of each one of them. The
first argument is the address of the array to be sorted. As you probably know,
the name of an array in C/C++ is equivalent to its address. In other words, the
argument iarr is equivalent to the expression &iarr[@]. The second argument
is the number of elements in the array. The third argument is the size of a single
element in the array. Because the size of an int is implementation dependent,
an expression that returns the correct size of an int is always used. The fourth
argument is the most interesting one. It will be discussed when the two other
source files are analyzed. For now, suffice it to say the fourth argument is the
address of a comparison function called by gsort.

Having sorted iarr, the program displays the sorted array. But before that is
done, it resets the loop counter j.

j = 0; /* reset loop counter */

Now the sorted array can display. Again, use a for loop to traverse the
elements of iarr and display each one of them.

for(; j < 10; j++) /* display sorted array */
printf ("element %d of iarr is: %d\n", j, iarr[j]);

In this example, gsort is applied to a built-in data type. However, gsort is a
generic function. It can be applied to any data type. What makes this genericity
work? The short answer—a callback function.

Callback Functions

A callback function is one not invoked explicitly by the programmer; rather, the
responsibility for its invocation is delegated to another function that receives the
address of the callback function. Before a demonstration of how it is done in
this particular example, some basic facts are necessary about the way functions
are stored in memory.

Data Pointers Versus Code Pointers

C and C++ make a clear-cut distinction between two types of pointers—data
pointers and code pointers. The memory layout of a function is very different

8.1

SORT AN ARRAY

from the memory layout of a variable. Without delving too deeply into
low-level machine architecture, a function consists of several components such
as a list of arguments, a return-to address, and machine instructions. A data
pointer, on the other hand, only holds the address of the first byte of a variable.
The substantial difference between data pointers and code pointers led the C
standardization committee to prohibit the use of data pointers to represent
function pointers and vice versa. In C++ this restriction was relaxed, yet the
results of coercing a function pointer to a void pointer are implementation
dependent. Conversion of data pointers to function pointers is, of course, a
recipe for a core dump. Recall also that unlike a data pointer, a function pointer
cannot be dereferenced, and that you cannot pass a function by value.

Platforms have a different underlying representation for code pointers and
data pointers. In some architectures, a 16-bit address can be used to hold the
address of a data variable, whereas a larger unit will hold a function address.

A data pointer declaration contains a specific data type to which the pointer
can point. Thus, a pointer to char can only point to a variable of type char.
Similarly, a function pointer declaration contains a specific signature to which
the pointer can be assigned. For example, a pointer to a function that takes no
arguments and returns an int can only be assigned to a function that has the
same signature. It is illegal to assign an address of a function with a different
signature to such a pointer.

As you saw earlier, the fourth argument of gsort is a pointer to a callback
function. However, you are free to pass an argument with the address of any
function you want to, as long as that function conforms to an agreed-upon
signature. The expected signature is specified in the prototype of gsort. Lets
have a look at it:

void qsort(void *, size_t, size_t, int (cmp*)(const void *, const void *));

void f ();

The highlighted part in the prototype is the signature of the expected
function pointer. Unfortunately, function pointers have a most intricate syntax,
for both humans and compilers. Still, they are a very capable feature in
C/C++—they are the basis for dynamic binding. Dynamic binding, also termed
late binding, is a delayed resolution of which function is invoked. The resolution
is delayed until runtime, as opposed to compile-time resolution. The most
prominent manifestation of dynamic binding is virtual member functions in
C+t,

The syntax of a function pointer is very similar to the prototype of a
function. To see that, let's examine the following statement:

This statement declares a function named f that takes no arguments and
does not return a value. A pointer to such a function has the following type:

w CHAPTER 8
THE STANDARD C LIBRARY’S INCLUDED ALGORITHMS

void (*) ();

The asterisk in parentheses is the nucleus of a function pointer. Two
additional components are required—the return type, which is void in this
example, and a parameter list enclosed in parentheses on the right. In this case,
the parameter list is empty. Please note that you did not define a pointer in the
declaration void (*) (), only a type of a pointer. A pointer variable, of course,
has to have a name. Here is an example of a pointer variable with the same
signature:

void (*p) (); //p is a pointer to a function that does not
//return a value and takes no arguments

The name of a pointer variable appears on the right of the asterisk, within
the parentheses. After a pointer variable is declared, a value can be assigned to
it. A value is simply the name of a function that has an identical signature, for
instance:

void func() {}
p = func;
A different value can be assigned to p as long as the value assigned to it is an
address of a function with an identical signature. Please note that the name of a
function is not a part of its type.

Let’s get back to gsort. The fourth argument of gsort is a pointer to a
function of the type:

int (*) (const void *, const void *)

Now you can parse this expression. The leftmost token is the return value,
int in this case. The asterisk enclosed in two parentheses denotes a function
pointer. The parameter list appears next. It declares the type of the function’s
arguments—a void pointer to a const object and another void pointer to a
const object. Thus, any function that takes two void pointers to const objects
(no additional arguments are allowed) and returns an int is suitable for gsort.
gsort is responsible for invoking this callback function through its address.
That is, the callback function “registers” itself in gsort, and lets gsort call it as
needed.

What is the role of gsort’s callback function? A sorting operation consists of
two independent stages. First, the elements have to be compared to one
another. In the second stage, the result of the comparison is used to relocate
elements to their relative positions in the array. As you can see, the first stage is
type dependent; in order to compare two elements, their types and values are
needed. However, the second phase, that is, the elements’ relocation process, is
type independent. All it needs is the size of an element, its address, and the

8.1

SORT AN ARRAY

total number of elements in order to reposition them in memory. This
information is contained in the first three arguments of gsort. The fourth
argument is a pointer to the callback function. The callback function compares
the elements and therefore, it has to know their type.

To summarize, the sorting algorithms can be divided into two tasks: one
responsible for memory relocations, and a second task, which is responsible for
performing comparisons. The memory relocation task is implemented in a
generic function; the comparison task is implemented in a callback function.

Let’s look at MAIN.CPP again to see the invocation of gsort.

qgqsort(iarr, /* address of array's beginning */
10, /* number of elements in array */
sizeof (int), /* sizeof each element */
compare); /* pointer to user-defined comparison function */

The address of compare, the callback function, is passed in the fourth
argument. compare itself is declared in COMPARE . H like this:

int __cdecl compare (const void* pfirst, const void * psecond);

As you can see, compare has a signature that complies with the signature
expected by gsort. compare returns an int and takes two void pointers that
point to const data. (The __cdecl specifier is a Microsoft-specific flag that
instructs the compiler to use the C calling convention.) The return value has to
be in one of three ranges: o indicates the arguments are equivalent. A negative
value indicates the first argument is smaller than the second one, and a positive
value indicates the first argument is greater than the second one.

Now that you know what compare basically does, let’s look at COMPARE . CPP
to see how it does it.

compare takes two arguments, pfirst and psecond. As you already know,
the comparison is aware of the type of the array elements. Therefore, compare
first casts pfirst and psecond into pointers to const int, and dereferences the
resulting pointers. Two local const ints, first and second, hold the values
recovered from the dereferenced pointers.

int __cdecl compare (const void* pfirst, const void * psecond)

{
const int first = * ((const int *) pfirst); /* dereference first arg */
const int second = *((const int*) psecond); /* dereference second arg */

The rest is simple. Subtract second from first and return the result:
return (first - second);

compare is invoked by gsort, which in turn examines the value returned
from compare to relocate the elements of the array in an ascending order.

m CHAPTER 8
THE STANDARD C LIBRARY’S INCLUDED ALGORITHMS

Comments

gsort, as noted earlier, is a generic function. To see how it sorts an array of C
strings, use a revised version of the preceding example.

Steps

Erase the contents of the comPARE. cPP file entirely and type the following
code into it:

#include <string.h>

int __cdecl compare (const void * pfirst, const void * psecond)
{
return strcmp(*(const char**) pfirst, *(const char **) psecond);

}

Save COMPARE.CPP. Erase the contents of the MAIN.CPP entirely and then
type the following code into it:

#include <stdlib.h>
#include <stdio.h>
#include "compare.h"

void main()
{
/* define an array of pointers to char and initialize */
/* its elements */
char * sarr[] = {"Stroustrup", "Koenig", "Ritchie",
0 "Kernighan"};
int j = 0; /* loop counter */

for(; j < 4; j++) /* display array before sorting */
printf ("element %d of sarr is: %s\n", j, sarr[jl);
/* sort sarr using gsort function */

gsort(sarr, /* address of array's beginning */
4, /* number of elements in array */
sizeof (char *), /* sizeof each element */
compare); /* pointer to user-defined */

/* comparison function */

printf ("sorted\n\n");
j = 0; /* reset loop counter */

for(; j < 4; j++) /* display sorted array */
printf ("element %d of carr is: %s\n", j, sarr[j]);

}

Save MAIN.CPP. Compile MAIN.CPP and COMPARE.CPP, and link MAIN.CPP.

If you are not working in a Windows environment, your compiler might
complain about the __cdec1 specifier in the prototype and the definition

8.1

SORT AN ARRAY

of the function compare. In that case, comment out or remove the
specifier __cdecl from COMPARE.H and COMPARE . CPP.

Run the program; the output should be as follows:

element @ of sarr is: Stroustrup
element 1 of sarr is: Koenig
element 2 of sarr is: Ritchie
element 3 of sarr is: Kernighan
sorted

element of sarr is: Kernighan

0
element 1 of sarr is: Koenig
element 2 of sarr is: Ritchie
element 3 of sarr is: Stroustrup

How It Works

Let’s look at MAIN.CPP. This program sorts an array of char *. The array
contains four elements—the names of C and C++ creators. No changes are
added to the flow of the program. The only changes are those deriving from the
different type of the array elements and the size of the array.

Let’s look at COMPARE. CPP to see the changes. The first source lines includes
the header file <string.h>, which contains the declaration of strcmp.

#include <string.h>

The prototype of compare, as expected, is the same. However, the function
body has changed. strcmp is used to compare the arguments, which you know
are C strings. Luckily, strcmp does not return a Boolean value indicating
whether the strings are identical; it would be useless for our purpose. Rather, it
performs a lexicographical comparison. A lexicographical comparison compares
two strings in a method similar to the way two words are compared to decide
which comes first in a dictionary. A lexicographic comparison treats every
character of the compared strings as an integer. The value of the character of
the second string is subtracted from the corresponding value of the first string.
The result can be @, which means that the two strings are identical. A positive
value indicates the first string ranks lexicographically higher than the second
one. A negative value indicates the first string ranks lexicographically lower
than the second one. This is exactly what gsort expects to get from its callback
function, so compare has only to invoke strcmp and return the result. In order
to call strcmp, you have to cast the void pointers to their real types.

int __cdecl compare (const void * pfirst, const void * psecond)

{

return strcmp(*(const char**) pfirst, *(const char **) psecond);

}

——

CHAPTER 8

THE STANDARD C LIBRARY’S INCLUDED ALGORITHMS

Comments

gsort, as you have seen, is a powerful algorithm. It is efficient, generic, and
standardized. However, you have to bear in mind that it does not support C++
objects. Unlike STL containers, gsort will not reconstruct a relocated object,
nor will it invoke the destructor of that object in its previous location. In other
words, gsort and STLs sort are not interchangeable, but are complementary.
You should use gsort with arrays (and arrays only) of plain data types such as
char, int, pointers of all kind, and structs.

COMPLEXITY

8.2

INTERMEDIATE
How do I...

Find an element in an array?

Problem

I know how to sort an array but | need to find an element in it. How do I do it
in C?

Technique

Standard C has a generic function for searching an element in an
array—bsearch. bsearch performs a binary search on a sorted array of
elements. If your array is not sorted, you should sort it before using bsearch.
Later you will see how it is possible to locate an element in a nonsorted array.

bsearch tries to locate an element in an array. If the element exists, bsearch
returns a pointer to it. Otherwise, it returns null. bsearch and gsort are
similar both in the way they are used and in the principles of their
implementation. Therefore, it is advisable for you to read this How-To after
reading How-To 8.1. Remember also that this How-To uses two source files
from the “Comments” section of How-To 8.1—COMPARE .H and COMPARE . CPP.
The text states whether a source file is identical to any of the source files used
in previous examples.

Steps

Change to your base source directory and create a new subdirectory
named C_BSEARCH.

Start your source code editor and type the following code into a file
named COMPARE .H. (Note: The following source file is identical to the
source file coMPARE .H from the “Comments” section in How-To 8.1.)

8.2

FIND AN ELEMENT IN AN ARRAY

#ifndef COMPARE_H
#define COMPARE_H

int __cdecl compare (const void* pfirst, const void * psecond);

#endif

Save COMPARE . H. Type the following code into a new file named
comPARE . CPP (Note: The following source code is identical to the source
code file comPARE . cPP from the “Comments” section in How-To 8.1.)

#include <string.h>

int __cdecl compare (const void * pfirst, const void * psecond)

{

return strcmp(*(const char**) pfirst, *(const char **) psecond);

}
Save COMPARE . CPP. Type the following code into a new file named
MAIN.CPP:

#include <stdlib.h>
#include <stdio.h>
#include "compare.h"

void main()

{
/* define an array of pointers to char and initialize it */
char * sarr[] = {"Kernighan", "Koenig", "Ritchie",
O "Stroustrup"};
char *pkey = "Stroustrup";

char *pkey2 = "Stepanov";
void *p = NULL;

printf ("\nlooking for %s...\n", pkey);

p = bsearch(&pkey, /* address of key */
sarr, /* address of array's beginning */
4, /* number of elements in array */

sizeof (char *), /* sizeof each element */
compare); /* pointer to user-defined */
/* comparison function */
if (p)
printf("%s was found!\n", *(const char **) p);
else
printf("requested item was NOT found\n");

printf ("\nlooking for %s...\n", pkey2);
p = bsearch(&pkey2, /*address of key */

sarr, /* address of array's beginning */
4, /* number of elements in array */

CHAPTER 8

THE STANDARD C LIBRARY’S INCLUDED ALGORITHMS

sizeof (char *), /* sizeof each element */
compare); /* pointer to user-defined */
/* comparison function */
if (p)
printf("%s was found!\n", *(const char **) p);
else
printf ("requested item was NOT found\n");

}

Save MAIN.CPP. Compile MAIN.CPP and COMPARE.CPP, and link MAIN.CPP.

If you are not working in a Windows environment, your compiler might
complain about the __cdec1 specifier in the prototype and the definition
of the function compare. In that case, comment out or remove the
specifier __cdecl from COMPARE.H and COMPARE . CPP.

A Run the program; the output should be as follows:

looking for Stroustrup...
Stroustrup was found!

looking for Stepanov...
Requested item was NOT found

How It Works

Let’s look at MAIN.CPP. The first source line includes <stdlib.h>, which
contains the prototype of bsearch. The second source line includes <stdio.h>,
which contains the prototype of printf (). The third line includes the proto-
type of compare, the callback function used by bsearch:

#include <stdlib.h>
#include <stdio.h>
#include "compare.h"

An array of C strings is defined and initialized inside main (). The array has
four elements, and it is initialized in a sorted order.

void main()

{
/* define an array of pointers to char and initialize it */
char * sarr[] = { "Kernighan", "Koenig", "Ritchie", "Stroustrup"};
The following keys hold values that bsearch will look up in the array. The
first key exists in the array; the other one does not.
char *pkey = "Stroustrup"; //exists in array
char *pkey2 = "Stepanov"; //does not exist in array

A void pointer, p, stores the result of bsearch.

void *p = NULL;

8.2

FIND AN ELEMENT IN AN ARRAY

bsearch is invoked twice. Here is the first invocation:
printf ("\nlooking for %s...\n", pkey);

p = bsearch(&pkey, /* address of key */
sarr, /* address of array's beginning */
4, /* number of elements in array */

sizeof (char *), /* sizeof each element */
compare); /* pointer to user-defined comparison function */

The arguments passed to bsearch are the same as the arguments of gsort,
except for the first one. Let's examine the role of each argument. The first one is
the address of a key that bsearch has to look up. That is, the address of a value
to be located in the array. In this case, the array in question holds elements of
type char *; therefore, a pointer to char * is passed as the first argument.

The rest should look familiar. The second argument is the address of the
array. The third argument is the total number of elements in the array. The
fourth argument is the size of an element in the array. Finally, pass the address
of the callback function. It is the same function compare used in the previous
How-To.

The result returned from bsearch is stored in p. bsearch returns the address
of the element that holds the value of the key, or nu11 when the key does not
exist in the array. You test the returned value and print a message accordingly:

if (p)

printf("%s was found!\n", *(const char **) p);
else

printf("requested item was NOT found\n");

printf ("\nlooking for %s...\n", pkey2);

bsearch looked for an element with the value "Stroustrup". Such an
element exists in the array. In the second invocation of bsearch, a key is used
with the value "Stepanov". No element in the array holds this value, so you
can expect to get null.

p = bsearch(&pkey2, /*address of key */
sarr, /* address of array's beginning */
4, /* number of elements in array */
sizeof (char *), /* sizeof each element */
compare); /* pointer to user-defined comparison function */
if (p)
printf("%s was found!\n", *(const char **) p);
else
printf("requested item was NOT found\n");

And null is what you get.

CHAPTER 8

THE

STANDARD C LIBRARY’S INCLUDED ALGORITHMS

COMPLEXITY

INTERMEDIATE

8.3 Howdol...
Locate an element in a nonsorted
array?

Problem
I have to look up a value in an array. | cannot use bsearch for this purpose
because the array is not sorted. How can | locate an element in the array
without having to sort it first?

Technique
Standard C does not offer a solution to this problem. However, many vendors
ship with their compiler libraries two additional lookup functions—_1search
and _1find. Both can locate an element in any array, sorted and nonsorted

alike.

Steps

Change to your base source directory and create a new subdirectory
named FIND_AND_SEARCH.

Start your source code editor and type the following code into a file
named cOMPARE . H. (Note: The following source file is identical to the
source file coMPARE.H from the “Comments” section in How-To 8.1.)

#ifndef COMPARE_H
#define COMPARE_H

int __cdecl compare (const void* pfirst, const void * psecond);

#endif

Save COMPARE . H. Type the following code into a new file named
coMPARE.CPP (Note: The following source code is identical to the source
code file comPARE.cPP from the “Comments” section in How-To 8.1.)

#include <string.h>

int __cdecl compare (const void * pfirst, const void * psecond)

{

return strcmp(*(const char**) pfirst, *(const char **) psecond);

}

Save COMPARE . CPP. Type the following code into a new file named
MAIN.CPP:

8.3

LOCATE AN ELEMENT IN A NONSORTED ARRAY

#include <stdlib.h>
#include <stdio.h>

#include <search.h>
#include "compare.h"

void main()

{
/* define an array of pointers to char and initialize it */
char * sarr[] = {"Kernighan", "Ritchie", "Koenig","Stroustrup"};
char *pkey = "Stroustrup";
char *pkey2 = "Stepanov";
void *p = NULL;
unsigned int num = 4; /* number of array elements */

printf ("\nlooking for %s...\n", pkey);

p = _1find(&pkey, /* address of key */
sarr, /* address of array's beginning */
&num, /* number of elements in array */
sizeof (char *), /* sizeof each element */
compare); /* pointer to user-defined */
/* comparison function */
if (p)
printf("%s was found!\n", *(const char **) p);
else
printf ("requested item was NOT found\n");

printf ("\nlooking for %s...\n", pkey2);

p = _1find(&pkey2, /* address of key */
sarr, /* address of array's beginning */
&num, /* number of elements in array */
sizeof (char *), /* sizeof each element */
compare);/* pointer to user-defined */
/* comparison function */
if (p)
printf("%s was found!\n", *(const char **) p);
else
printf("requested item was NOT found\n");

}
Save MAIN.CPP. Compile MAIN.CPP and COMPARE.CPP, and link MAIN.CPP.

If you are not working in a Windows environment, your compiler might
complain about the __cdec1 specifier in the prototype and the definition
of the function compare. In that case, comment out or remove the
specifier __cdecl from COMPARE.H and COMPARE . CPP.

I Run the program; the output should be as follows:

looking for Stroustrup...
Stroustrup was found!

m CHAPTER 8
THE STANDARD C LIBRARY’S INCLUDED ALGORITHMS

looking for Stepanov...
Requested item was NOT found

How It Works

Let’s look at MAIN.CPP. The first source line includes <stdlib.h>, which
contains the declaration of bsearch. The second source line includes
<stdio.h>, which contains the declaration of the function printf (). The third
line includes the prototype of compare, which is the callback function used by
bsearch:

#include <stdlib.h>
#include <stdio.h>
#include "compare.h"

An array of C strings is defined and initialized inside main (). The array is
deliberately not sorted.

void main()

/* define an array of pointers to char and initialize it */
char * sarr[] = {"Kernighan", "Ritchie", "Koenig","Stroustrup"};

The following keys hold values that _1find will look up in the array. The
first key exists in the array; the second one does not.

char *pkey = "Stroustrup";
char *pkey2 = "Stepanov";

A void pointer, p, stores the result of _1find. Also, a variable num of type
unsigned int is declared as an argument of _1find.

void *p = NULL;
unsigned int num = 4; /* number of array elements */

_1find is invoked twice. Here is the first invocation:

printf ("\nlooking for %s...\n", pkey);

p = _1find(&pkey, /* address of key */
sarr, /* address of array's beginning */
&num, /* number of elements in array */
sizeof (char *), /* sizeof each element */
compare); /* pointer to user-defined comparison function */

The parameters passed to _1find are the same as the parameters of bsearch,
except for the third one. The first element is the address of a key 1find has to
look up (the address of a value to be located in the array). In this case, the
sought array holds elements of type char *. A pointer to a char * is passed as
the first argument. The second argument is the address of the array. The third
argument is slightly different from bsearch: Instead of the number of total

. B
CHOOSE BETWEEN _LFIND AND _LSEARCH

elements in the array, pass a pointer to an unsigned int that holds the number
of total elements in the array. The fourth argument is the size of an element in
the array. Finally, pass the address of the callback function. Again, it is the
address of compare that you've used before.

The result returned from _1find is stored in p. _1find returns the address of
the element that holds the value of the key, or nu11 when the key does not exist
in the array. Test the returned value and display a message accordingly:

if (p)

printf("%s was found!\n", *(const char **) p);
else

printf("requested item was NOT found\n");

printf ("\nlooking for %s...\n", pkey2);

_1find looked for an element with the value "Stroustrup". This value
exists in the array. In the second invocation of _1find, use a key with the value
"Stepanov". No element in the array holds this value, so you can expect to get
null.

printf ("\nlooking for %s...\n", pkey2);

p = _1find(&pkey2, /* address of key */
sarr, /* address of array's beginning */
&num, /* number of elements in array */
sizeof (char *), /* sizeof each element */
compare);/* pointer to user-defined comparison function */
if (p)
printf("%s was found!\n", *(const char **) p);
else
printf("requested item was NOT found\n");

As expected, you get a null result this time.

COMPLEXITY
INTERMEDIATE

8.4 Howdol...
Choose between 1find and
_lsearch?

Problem
I know how to use bsearch to find an element in a sorted array, and | also
know | have to use _1find to look up an element in an array that has not been
sorted. However, | would like to know when | should use _1find and when |
should use _1search. Apparently, both these functions can be used to find an
element in an array that has not been sorted.

m CHAPTER 8
THE STANDARD C LIBRARY’S INCLUDED ALGORITHMS

Technique
_1search, like 1find, performs a linear search on an array that doesn't have to
be sorted in advance. The signature of _1search is identical to _1find. Thus,
these functions are pretty similar. However, there are three differences in their
behavior when a key cannot be found in the array:

Unlike _1find, which returns null when it cannot find a key, 1search
appends that key to the end of the array.

_lsearch increments the number of array elements (the third argument)
to reflect the fact that a new element has been added to the array.

After appending the new element and incrementing the number of
elements, _1search returns a pointer to the newly added key.

The following program demonstrates how to use _1search.

Steps

Change to your base source directory and create a new subdirectory
named LSEARCH_DEMO.

Start your source code editor and type the following code into a new file
named MAIN.CPP:
#include <stdlib.h>

#include <stdio.h>
#include <search.h>

int __cdecl compare (const void* pfirst, const void * psecond)
/* callback function */

{
return (*(const char *) pfirst) - (*(const char *) psecond);
}
void main()
{
char arr[] = {'a', 'b'};/* define and initialize */
/* an array of 2 chars */
char key = 'a';
char key2 = 'c'; /* false key which does not exist in arr */
void *p = NULL; /* store the result of _lsearch */

unsigned int num = 2; /* number of elements in arr */
printf ("\nlooking for %c...\n", key);

/*first invocation. _lsearch finds 'a' in arr */
p = _lsearch(&key, /* address of key */

8.4

CHOOSE BETWEEN _LFIND AND _LSEARCH

arr, /* address of array's beginning */
&num, /* number of elements in array */
sizeof (char), /* sizeof each element */
compare); /* pointer to user-defined */
/* comparison function */
if (p)
printf("%c was found!\n", *(char*)p);

printf ("\nlooking for %c...\n", key2);

/* second invocation. _lsearch can't find 'c' in arr */
/* 'c' is appended to arr and num incremented */

p = _lsearch(&key2, /* address of key */
arr, /* address of array's beginning */
&num, /* number of elements in array */
sizeof (char), /* sizeof each element */
compare); /* pointer to user-defined */
/* comparison function */

printf("%c was appended to arr\n", * (char*) p);
printf("arr has %d elements \n", num);
printf("the newly added element is: %c\n", arr[2]);

}
Save MAIN.CPP.
Compile and link MAIN.CPP.

If you are not working in a Windows environment, your compiler might
complain about the __cdec1 specifier in the function compare. In that
case, comment out or remove the specifier __cdecl from the definition of
compare.

Run the program; the output should be as follows:

looking for a...
a was found!

looking for c...

c was appended to arr

arr has 3 elements

the newly added element is: C

How It Works

Let’s look at MAIN.CPP. The first step is to define the appropriate version of
compare, the callback function used by _1search.

int _ cdecl compare (const void* pfirst, const void * psecond)
/* callback function */

m CHAPTER 8
THE STANDARD C LIBRARY’S

INCLUDED ALGORITHMS

{
return (*(const char *) pfirst) - (*(const char *) psecond);
}

An array of two characters is defined and initialized inside main (). Also
define two keys to be looked up in the array, a void pointer to store the result
of 1search, and an unsigned int that holds the number of array elements.

char arr[] = {'a', 'b'};/* define and initialize an array of 2 chars */
char key = 'a'y

char key2 = 'c'; /* false key which does not exist in arr */

void *p = NULL; /* store the result of _lsearch */

unsigned int num = 2; /* number of elements in arr */

_1search is invoked with the key 'a'. This value exists in the array, so

_1search returns a pointer to the address of the array element that holds the
value 'a'.

/*first invocation. _lsearch finds 'a' in arr */

p = _lsearch(&key, /* address of key */
arr, /* address of array's beginning */
&num, /* number of elements in array */

sizeof (char), /* sizeof each element */
compare); /* pointer to user-defined comparison function */
if (p)
printf("%c was found!\n", *(char*)p);

The second invocation of _1search looks up the value 'c' in the array. This
value does not exist in arr. Therefore, _1search appends 'c' to the end of the
array, increments num, and returns a pointer to the newly added element:

/* second invocation. _lsearch can't find 'c' in arr */
/* 'c' is appended to arr and num incremented */

p = _lsearch(&key2, /* address of key */
arr, /* address of array's beginning */
&num, /* number of elements in array */
sizeof (char), /* sizeof each element */
compare); /* pointer to user-defined comparison function */

printf("%c was appended to arr\n", * (char*) p);
printf("arr has %d elements \n", num);
printf("the newly added element is: %c\n", arr[2]);

Comments

When can _1search be useful? Suppose you need to compile a thesaurus of
words that appear in some document. This process can be streamlined by using
_1search. First, you declare an array of char *, in which every element
represents a word. Then you retrieve the next word from the document and use

8.5

GENERATE A SEQUENCE OF RANDOM NUMBERS

_1search to look it up in the current array. If _1search doesn't find the word,
it appends the missing word to the end of the array. This process is repeated
until the entire document has been read. The resultant array contains all the
words of the document.

The ANSI C standard does not define _1find and _1search. If your code is
to be ported to platforms other than Win32, you should consider judiciously
the usage of nonstandard features in your programs. Remember also that the
bsearch algorithm is more efficient because it uses a binary search to locate an
element, whereas both _1search and _1find use a linear search. _lsearch in
particular is slower because it has to reallocate memory for the elements it
appends to the array. For these reasons, you should prefer bsearch to _1find
or _lsearch whenever you have the choice.

COMPLEXITY

BEGINNING
8.5 Howdol...
Generate a sequence of random
numbers?
Problem
I need to generate a sequence of random numbers in my program.
Technique
The Standard C Library provides two functions for the purpose of random
numbers generation: rand and srand. This How-To uses these functions to
generate a sequence of random numbers.
Steps

Change to your base source directory and create a new subdirectory
named RANDOM_DEMO.

Start your source code editor and type the following code into a new file
named MAIN.CPP:

#include <stdlib.h>
#include <stdio.h>

void main()

{
int j = 0;

CHAPTER 8

——

THE STANDARD C LIBRARY’S INCLUDED ALGORITHMS

for (; j < 5; j++)
printf ("%d\n", rand());

}
Save MAIN.CPP.
Compile and link MAIN.CPP.

Run the program; it will display five different numbers on your screen.
Write down these numbers.

I Run the program once more; it should display the same five numbers that
you wrote down.

How It Works

Let’s look at MAIN.cPP. First, it includes the header <stdlib.h>, in which the
function rand is declared. It also includes the header <stdio.h> to use printf.

#include <stdlib.h>
#include <stdio.h>

The body of main() is very simple. A loop control variable, j, is defined and
initialized. Next, a for loop executes five times. On each iteration, the loop
displays the value returned from the function rand. rand generates a sequence
of pseudorandom numbers.

void main()

{
int j = 0;

for (; j < 5; j++)
printf ("%d\n", rand());

The term pseudorandom implies that the generated sequence is not really
random; no matter how many times you execute the program, it generates
exactly the same numbers. This is because rand has a set of values and a
starting point. The default starting point is 1 and the generated sequence is
between 1 and the macro RAND_MAX (defined in <stdlib.h> header). To create a
unique sequence of numbers every time the program executes, you have to set a
different starting point. You do that by using the function srand. To demon-
strate that, add two changes to the source file MAIN.CPP:

#include the standard <time.h> header.

Add the following line immediately after the declaration of the variable j:

8.5

GENERATE A SEQUENCE OF RANDOM NUMBERS

srand (time(NULL));
After these changes, MAIN.cPP should look like this:

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
void main()
{
int j = 0;
srand (time(NULL)); //set starting-point
for (5 j < 5; jt+)
printf ("%d\n", rand());
}

Now recompile and link MAIN.CPP. Run the program once and write down
the generated numbers it displays. Run it once more. This time, a different
sequence is generated.

The reason you get different sequences on every program run is that srand
assigns a unique value to the starting point every time the program is executed.
To create a unique value for srand, use the function time. time returns a long
integer that holds the number of seconds elapsed since January 1, 1970.

— CHAPTER 9
THE STANDARD

TEMPLATE LIBRARY'S

L o = -
“
- ALGORIIHMS

THE STANDARD
TEMPLATE LIBRARY’S
INCLUDED
ALGORITHMS

How do |I...
9.1 Create classes for sequential containers?
9.2 Use predicates with sequence operations?

9.3 Repeat an action with all elements in a container
range?

9.4 Compare two sequences?
9.5 Search for a sequence of values in a container?

9.6 Accumulate all container elements and create a
sequence of accumulated sums?

9.7 Sort elements in a container using different
sorting indexes?

9.8 Change the order of the container elements?

CHAPTER 9

m THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

The Standard Template Library (STL) is a C++ component library developed by
Alexander Stepanov and Meng Lee at the Hewlett-Packard laboratories.
Algorithms is one of the sets of STL components. An algorithm is a
computational procedure that applies to different containers.

STL algorithms are represented by template functions and provide copying,
searching, sorting, merging, and other operations on data. Algorithms are not
member functions; they are separate from the container classes.

The idea of separating data and algorithms might sound strange for a
programmer used to the object-oriented approach to software design. Therefore,
understanding the STL algorithms might be a serious challenge.

It is common now to combine STL algorithms into four groups: nonmutating
operations, mutating operations, sorting and related operations, and generalized
numeric operations. Tables 9.1 through 9.4 briefly describe the algorithms.

Table 9.1 Nonmutating Operations

ALGORITHM DESCRIPTION
adjacent_find Finds the consecutive duplicates in a range of elements
count, count_if Counts the number of elements that satisfy a condition in a

range of elements

equal Compares two sequence ranges element by element
for_each Applies a function to all elements in a range
find, find_if Finds an element that equals a specified value or satisfies a
certain condition
mismatch Finds mismatches between two ranges of elements
search Searches for the first match of a sub-sequence in a sequence of data

Table 9.2 Mutating Operations

ALGORITHM DESCRIPTION

copy, copy_backward Copies (or copies backward) a range of elements into
another range

fill, fill n Fills a range of elements with a specified value

generate, generate n Generates values and fills a range with the values

partition, stable partition Moves the elements that satisfy a predicate before the

other elements in a sequence

CHAPTER 9

T

THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITMS

ALGORITHM

DESCRIPTION

random_shuffle

remove, remove_if, remove_copy
remove_copy_if

replace, replace_if
replace_copy, replace_copy_if
reverse, reverse_copy

rotate, rotate_copy

swap, iter_swap, swap_ranges
transform

unique, unique_copy

Randomly shuffles data in a range of elements
Removes elements from a

range of elements

Replaces elements that satisfy specified

conditions in a range of elements

Reverses data in a range of elements

Rotates data in a range of elements

Exchanges values or ranges in a sequence

Performs a specified operation on a sequence, or two
sequences, and copies the result into a new sequence
Removes consecutive duplicates from a range of elements

Table 9.3 Sorting and Related Operations

ALGORITHM

DESCRIPTION

sort, stable_sort, partial_sort,
partial_sort_copy
nth_element

lower_bound, upper_bound
equal_range, binary_search
merge, inplace_merge
includes, set_union
set_intersection
set_difference
set_symmetric_difference
push_heap, pop_heap
make_heap, sort_heap

min, max, min_element
max_element
lexicographical_compare
next_permutation
prev_permutation

Sorts a range of elements (unstable,

stable, or partial)

Places an element in the location where it would be
sorted

Finds bounds for, or location of,

a value in a sorted range

Combines two sorted ranges in a single sorted range
Sets different operations on sorted ranges

Performs heap operations

Finds minimum and maximum of two arguments
or in a specified range

Lexicographically compares two ranges of elements
Generates permutation of a range of elements

CHAPTER 9

m THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

Table 9.4 Generalized Numeric Operations
ALGORITHM DESCRIPTION
accumulate Accumulates all elements in a range
inner_product Calculates the inner product of the elements in two ranges
partial sum Calculates a generalized partial sum
adjacent_difference Calculates the differences of adjacent elements
9.1 Create Classes for Sequential Containers

9.2

9.3

9.4

A sequential container in the STL is a container whose elements are arranged in
a linear order. vector, deque, and list are examples of sequential containers.
When developing a class based on the vector or on the list container,
programmers might want to apply the algorithms to the container class. This
How-To describes this process and shows the usage of count, find, and unique
algorithms.

Use Predicates with Sequence Operations

An STL predicate is a unary function that returns a result representing the truth
or the falsehood. The result should be convertible to the bool data type. The
equality operator (==) is a simple example of a predicate. Nonmutating and
mutating sequence operations, such as count or find, can be extended to the
operations that compare the elements using predicates other than the equality
operator. Usually, the extended version of the algorithm ends with _if, such as
count_if and find_if. This How-To shows the usage of the _if as well as of
the other functions with predicates.

Repeat an Action with All Elements in a Container
Range

The for statement in C++ is a very common solution to perform an action on a
range of elements. The elements usually can be accessed by using a pointer, and
the for loop increments the pointer by performing a move to the next element.
An analog of this operation is provided in the STL with the for_each
algorithm. The algorithm accesses elements in a container sequentially in a
specified range. The algorithm consecutively applies a function to the elements.
This How-To shows an example of the usage of the for_each algorithm.

Compare Two Sequences

A comparison of two sequences is solved by a few algorithms. The equal and
the mismatch algorithms are very similar. However, there is a major difference:
The mismatch algorithm returns the iterator to the first element that is different
in the sequences; the equal algorithm returns just true or false depending on
the result of the comparison. This How-To provides an example of the two
algorithms and describes their usage.

CHAPTER 9

THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

9.5

9.6

9.7

9.8

Search for a Sequence of Values in a Container

Another very common task programmers have to solve is the search for a
sub-sequence within a sequence of elements. C and C++ have standard func-
tions that help solve this task with strings as sequences of characters. The STL
provides the search algorithms that can be applied to different containers. This
How-To shows how you can search for a sequence of words in text.

Accumulate All Container Elements and Create a
Sequence of Accumulated Sums

A quite common task in programming consists of calculating sums and
accumulated sums for a sequence of data. The extension of this task can be an
accumulation of data based on an operation other than addition. For example,
calculating an accumulated product also happens very often. The STL
functions, such as accumulate and partial_sum, can help programmers
perform these common tasks. This How-To explores the accumulation of data
in the STL.

Sort Elements in a Container Using Different
Sorting Indexes

The sort algorithm in the Standard Template Library can have a different
syntax. It can use a default relational operator for ordering the data or another
function specified by the programmer. A class that can use the sort algorithm
should provide certain features. This How-To creates a phone book class and
then applies the sort algorithm to it. The sorting order is provided by the
overloaded relational operator firs and then by the user-defined LessThan
function.

Change the Order of the Container Elements

It is very important to a programmer to be able to change the order of the
sequence of elements. If the elements represent tasks in a queue, programs
quite often rotate the elements—that is, take the first element and move it to
the back of the queue. If the elements represent playing cards in a computer
game, the programs need to shuffle the deck of cards. It might be necessary to
reverse the order of the data elements for other applications. This How-To
describes the rotate, reverse, and random_shuffle algorithms. These
mutating algorithms represent common operations on data that change the
order of the elements in a sequence.

The second part of the How-To describes the partition and the
stable_partition algorithms. These algorithms move all elements that satisfy
a certain predicate before other elements in the sequence. In addition, the
stable_partition algorithm preserves the relative order in the parts of the
sequence.

B —

m CHAPTER 9
THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

COMPLEXITY
INTERMEDIATE

9.1 Howdol...
Create classes for sequential
containers?
Problem

I develop programs, such as parsers, for text processing. | want to maintain
certain dictionaries as lists, for instance, a list of names. For the list of names, |
want to create a fully operational class. However, the members of the 1ist
container don't support many operations, such as counting or finding elements
based on certain criteria. On the other hand, some member functions of the list
container provide the same functionality as some algorithms. For example,
there is the unique member function and the unique algorithm, as well. Which
functions should I use to create the class in a simple and elegant way?

Technique

The List and other sequential containers such as vector and deque have
member functions that make container maintenance simple. These functions
can be used to create the container, and add elements to the back, front
(except vector), and middle of the container. You can get the elements from
the back or front of the container and perform a few other operations. When
creating a new class based on such a container, use member functions to
support procedures specific to the class.

However, a few operations are not supported in the sequential containers. To
find a certain element in a list of words or to count all elements that start with
letter s, algorithms have to be used. In the Standard Template Library,
algorithms are separated from the containers. During software design and
development, these generic algorithms are applied to the specific needs of our
class.

This How-To shows the creation of a class containing names. The class
implementation is based on the list container. This How-To also compares the
usage of certain algorithms and the usage of member functions.

Steps
Create a class declaration
Imagine you are developing a big application for text processing. The

program is going to process English text. For the parsing and the keyword
search, you would need a few data sets, such as prepositions or English

9.1

CREATE CLASSES FOR SEQUENTIAL CONTAINERS

names. To maintain the names, you must create a separate class that
allows you to perform a few operations on the names, such as adding,
searching, sorting, and removing duplicates.

First of all, you have to decide on the appropriate container for your
needs. You want to do sequential operations that will process ranges of
the data, such as “all names from Richard to Tom.” Therefore, select
sequential containers for the program. STL has three types of sequential
containers: lists, vectors, and deques. (Some STL implementations also
have slist and bit-vector containers; however, they are not common.)
Choose the list container because it inserts the data faster than the vector
or the deque. In STL, the list container represents a doubly linked list. An
element on this list contains the pointers both to the next element and the
preceding one.

The following code is the class declaration:
//persname.h

#include <list>

#include <string>

using namespace std;

class persname

{
public:
persname(); // constructor
~persname () ; // destructor
// Add a new name
void Add(string NewName);
// Add a new name after an existing one
void AddBefore(string NewName, string BeforeName);
// Sort the names in alphabetical order
void Sort(void);
// Remove duplicate names from the sorted list
void RemoveDuplicates(void);
/] Check is the name exists in the list
bool NameExists(string TestName);
// Count 'TestName' names
int CountNames(string TestName);
// Display all names
void DisplayAll(void);
private:

list <string> PName;

};

CHAPTER 9

m THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

The private part of the class contains the list of strings. To support the
strings as well as the STL lists, you must include the header files:

#include <list>
#include <string>

The Microsoft Visual C++ 5 compiler was used for this example.
Depending on your compiler, you might change the header file names to
<list.h>and <string.h> or some other names. You have to check your
compiler reference to get the correct names.

In addition to the constructor and the destructor member functions, the
public part of the class contains the following functions:

void Add(string NewName) adds a new name of the string type
to the end of the list.

void AddBefore(string NewName, string BeforeName) addsa
new name of the string type before the first occurrence of a
specified name or to the back of the list if the specified name does
not exist.

void Sort(void) sorts all names in the list in ascending
alphabetical order.

void RemoveDuplicates(void) removes consecutive duplicate
names from the list. The function is not supposed to remove all
duplicates; it can do so only if the list is sorted.

bool NameExists(string TestName) is one of the most important
functions in the class. During a parsing procedure the function is
executed to check words against the names in the list.

int CountName(string TestName) counts the occurrences of
TestName in the list.

void DisplayAll(void) displays all names in the list to the
computer screen.

These functions are just the first step in the class development. Later, you
are going to create more functions to satisfy more needs of the class.

Class implementation

Your class implementation will be very simple. You can improve the class
functionality by adding validation routines or improve the performance
by changing the implementation according to the specifics of your

9.1

CREATE CLASSES FOR SEQUENTIAL CONTAINERS

compiler. One of the changes can be done if your version of STL supports
the slist container (singly linked list). The singly linked list would
perform better in this case because you don't need backward operations.

// persname.cpp

#include
#include
#include
#include

<iostream>
<list>
<algorithm>
<string>

using namespace std;

#include

persname:

{
}

persname:

{
}

// Add a

void persname::Add(string NewName)

{

PName.push_back (NewName) ;

}

// Add a new name before an existing one or to the end

"persname.h"

rpersname ()

:~persname ()

new name

// of the list

void persname: :AddBefore(string NewName, string BeforeName)

{

list <string>::iterator SResult;

SResult = find(PName.begin(), PName.end(), BeforeName);
PName.insert (SResult, NewName);

}

// Sort the names in alphabetic order

void persname::Sort(void)

{

PName.sort();

}

// Remove duplicate names from the sorted list
void persname::RemoveDuplicates(void)

{

list <string>::iterator new_end;

-

m CHAPTER 9
THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

new_end = unique(PName.begin(), PName.end());
PName.erase(new_end, PName.end());

}

// Check is the name exists in the list
bool persname::NameExists(string TestName)

{
list <string>::iterator SResult;
SResult = find(PName.begin(), PName.end(), TestName);
if (SResult == PName.end()) return false;
return true;
}

// Count all names
int persname::CountNames(string TestName)

{

return count (PName.begin(), PName.end(), TestName);

}

// Display all names
void persname::DisplayAll(void)

{
list <string>::iterator i;
for (i = PName.begin(); i!=PName.end(); i++)
cout << *i << endl;
}

This example was created using Microsoft Visual C++ version 5. If you
use the Borland C++ 5 compiler, you have to change the line

return count (PName.begin(), PName.end(), TestName);

in the persname: : CountNames function to

int iCount;
count (PName.begin(), PName.end(), TestName, iCount);
return iCount;

Let’s discuss the implementation of the member functions.

The void Add(string NewName) function takes a string argument and
pushes it to the end of the Pname list. This operation helps to create the
lists rapidly without ordering the names. To implement it, use the
push_back member function of the list container. The member function is
common to all sequential containers and inserts a new element of an
appropriate type to the end of the container.

e 325 pm
CREATE CLASSES FOR SEQUENTIAL CONTAINERS

void AddBefore(string NewName, string BeforeName) inserts the
NewName element before the first occurrence of the BeforeName element. If
the BeforeName element does not exist, the function inserts the NewName
element at the back of the list.

The two Add functions are void in this implementation. However, in a
more sophisticated class the functions could return a value. For instance,
true would be returned if the operation were successful and false if the
operation failed.

void Sort(void) sorts all elements in the list. This brings up the first
question: Should you use the sort member function of the list container
to sort the names, or should you make the implementation with the sort
algorithm of the Standard Template Library? No answer to this question is
correct under all circumstances.

In this case, the choice to use the sort member function of the list
container is determined by the limitations of the container. The container
uses input/output, forward, and bidirectional iterators. However, the sort
algorithm accepts only random-access iterators as its arguments.

Using the sort algorithm is appropriate when you want to make your
solution more generic. For example, if you are not sure you selected the
correct container and want to be able to change the container in the
future, the sort algorithm will better solve this problem. You can apply
the sort algorithm to different containers and changing the container
would not change the persname: : Sort member function.

On the other hand, using the sort member function of the 1ist class is
more efficient. Even if you developed a sort algorithm that works with

bidirectional iterators, it is a good idea to keep using the sort member

functions of the list container.

This sort function sorts the data in ascending alphabetical order.

The RemoveDuplicates function removes the consecutive duplicates from
the list of names. The function uses the unique algorithm to remove the
duplicates. The algorithm is used instead of the unique member function
so you will be able to extend the class functionality quickly.

The arguments of the unique algorithm specify the iterators to the first
and last elements in the range that should be checked for duplicates. The
algorithm returns an iterator that points to the end of the new list range.

m CHAPTER 9
THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

Note that the unique algorithm does not truncate the unused elements
after it removes the duplicates. Therefore, you have to apply the erase
function that erases all elements of the list from the new end to the old
end.

Pointing to the list elements is provided by the iterators. The iterator that
points to the new end of the list is declared with the statement

list <string>::iterator new_end;

The iterators that point to the beginning and end of the list are the results
of the 1ist member functions begin() and end(). The functions exist for
all sequential and associative containers.

The NameExists function uses the find algorithm to find the first
occurrence of the specified name in the data range:

SResult = find(PName.begin(), PName.end(), TestName);

This algorithm accepts the range limits as the first two arguments. This
class specifies the entire container as the range. The third argument is the
value of the element to be found. The find algorithm compares the
elements in the range with the specified value using the == operator of the
data in the list. The return value is an iterator that points to the first
occurrence of the specified element in the container. If the element with
the specified value is not found, the resulting iterator points to the end of
the range.

The countNames function is the first iteration in creating a function that
counts elements in a specified sub-sequence. The CountNames function
returns the number of occurrences of a specified name in the list. The
function uses the count algorithm on the entire sequence from
PName.begin() to PName.end().

In order to test this class, create the DisplayAll function that displays all
elements in the list. The function runs a loop from the first to the last
element in the list. Note that the end () member function points after the
end of the list (or another container).

To use the algorithms, you must include the <algorithm> header file. For
some compilers, the file can have <algorithm.h>, <algo.h>, or another
name.

9.1

CREATE CLASSES FOR SEQUENTIAL CONTAINERS

Testing the class

To test the persname class implementation, write a small program that
executes all functions and displays the result.

// This is the program to test
// persname class
/] pntest.cpp

#include <iostream>
#include "persname.h"

int main()

{
persname Names;

Names.Add ("Andrew");
Names.Add ("Peter");
Names.Add ("Martin");
Names.Add ("Andrew");
Names.Add ("Andrew");
Names.Add ("Margaret");

Names.Sort();
Names.DisplayAll();
cout << endl;

cout << "There are " << Names.CountNames("Andrew") <<
" Andrews in the list" << endl;

Names.RemoveDuplicates();

cout << endl;

Names.AddBefore("James", "Margaret");
Names.DisplayAll();
cout << endl;

if (Names.NameExists("Peter")) cout << "Peter" << endl;
if (Names.NameExists("peter")) cout << "peter" << endl;

return 0;

}

The program creates the list of names, sorts it, and displays it onscreen.
The first output should show the names in the following order:

Andrew
Andrew
Andrew
Margaret
Martin
Peter

CHAPTER 9

m THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

Then the program counts the number of Andrews in the list and shows

There are 3 Andrews in the list

The next step is to remove duplicates and to add James before Margaret.
The output should show the new list:

Andrew

James

Margaret

Martin
Peter

Finally, check for the existence of the name Peter in the list. To do this,
execute the NameExists method twice: the first time with the name peter
starting with a capital P, and the second time with the name peter
starting with a small p. The output should show the line with the name
only once:

Peter

Comments

Developing classes using STL is not a straightforward process. You have to
decide the appropriate type of the container and whether to use algorithms or
member functions. Sequential containers have some of the necessary functions.
The selection of algorithms should be done thoroughly in order to allow
extension of the class methods. The next How-To shows how you can extend
the functionality of the class using STL predicates.

COMPLEXITY

ADVANCED
9.2 Howdo I...
Use predicates with sequence
operations?
Problem

Sequence operations such as find, count, and unique use a comparison based
on the == operator. The == operator is defined for the data type that is used in
the container and it often does not cover my needs. | want to be able to find
elements that satisfy certain criteria. For example, | want to find the elements
that end with er, or count all elements that start with M. How do | use other
functions than == operator with the sequential algorithms?

9.2

USE PREDICATES WITH SEQUENCE OPERATIONS

Technique

To extend the functionality of the find, count, and unique algorithms, specify
certain predicates that will be used in the comparison instead of the equality
operator (==). Predicates are unary functions that return a result representing
true or false. The result should be convertible to the bool data type. You are
going to create a few more methods using predicates for the class that maintains
names for the text processing.

Steps

Create a method that uses a predicate with the count algorithm

In this How-To, you will learn to create a new method that counts all
names in the list that start with the letters from A to L. One possible
reason for doing this is to separate the set of names when it is becoming
too big. To count the names, use the count_if algorithm that allows you
to specify a function for selecting certain data.

The function should be a predicate—that is, a unary function whose
result represents the truth or falsehood of some condition. In this
example, the function will return true if the name starts with a letter
from A to L. The function will be used in the new CountNamesAL method
that is added to the persname class. The following code is added to the
class definition that will be now in the file persnami.h:

// Count names that start with 'A' to 'L'
int CountNamesAL(void);

The function definition is also added to the class and located in the file
persnami.cpp

// Count names that start with 'A' to 'L'
int persname::CountNamesAL (void)

{
return count_if (PName.begin(), PName.end(),
bind2nd(less<string>(),"M"));

}

The count_if algorithm uses a new function bind2nd. It converts a
binary function to a unary predicate. The result of the

bind2nd(less<string>(),"M")

is true if the element is lexicographically smaller than M. In other words,
it will return true if the word starts with a letter from A to L.

CHAPTER 9

m THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

Microsoft Visual C++ 5 was used to test this example. If you use Borland
C++ 5, you must change the line with the return statement in the
CountNamesAL function to

int iCount;

count_if (PName.begin(), PName.end(), bind2nd

0 (less<string>(),"M"), iCount);
return iCount;

To test this algorithm, the main program was modified slightly.

// This is the program to test
// persname class
/1 pnitest.cpp

#include <iostream>
#include "persnami.h"

int main()

{

persname Names;

Names.Add ("Andrew");
Names.Add ("Peter");
Names.Add ("John");
Names.Add ("Andrew");
Names.Add ("Andrew");
Names.Add ("Margaret");

Names.Sort();
Names.DisplayAll();
cout << endl;
// The following code replaces the code in the previous example
cout << "There are " << Names.CountNamesAL() <<
" names starting from A to L" << endl;

return 0;

}
If you run the program, the output will be
There are 4 names starting from A to L

Create a method that uses a predicate with the find algorithm

You can use predicates with other algorithms such as find. The extended
version of this algorithm also has the suffix _if. Let’s write the function to
find the first occurrence of the word that starts with a letter greater than I.

9.2

USE PREDICATES WITH SEQUENCE OPERATIONS

The new member function of the persname class is called FindNameJ. The
FindNamed declaration and definition follow:

// Find the first name that start with 'J'
string FindNamed (void);

and

string persname::FindNamedJ (void)

{

list <string>::iterator i;

i = find_if(PName.begin(), PName.end(),
bind2nd(greater<string>(),"1ZZZ"));
return *i;

}

To start the search from the letter J, the code uses a trick. All words
starting with J to Z are described as greater than 1zzz.

To test the member function, you can execute the following program:

// This is the program to test
// persname class
/] pnitest.cpp

#include <iostream>
#include "persnami.h"

int main()

{
persname Names;

Names.Add ("Andrew");
Names.Add ("Peter");
Names.Add ("John");
Names.Add ("Andrew");
Names.Add ("Andrew");
Names.Add ("Margaret");

Names.Sort();
Names.DisplayAll();
cout << endl;

// The following lines are new; they show the usage of FindNameJ
cout << "The first name starting with J is "
<< Names.FindNamed () << endl;

return 0;

}

m CHAPTER 9
THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

The program should return

Andrew
Andrew
Andrew
Andrew
John
Margaret
Peter

The first name starting with J is John
Create a method that uses a predicate with the unique algorithm

There is no _if version of the unique algorithm. Instead, unique is an
overloaded name. Another function accepts a binary predicate as an
argument.

Let’s write a program that removes all names starting with the same letter
except the first one. The new member function of the persname class will
have the following declaration and definition:

// Leaves one word per letter
void RemoveA (void);

and
class SameLetter:binary_function <string, string, bool>
{
public:
bool operator()(const string& a, const string& b) {
if (a.at(@) == b.at(0))
return true;
else
return false;
}
}s

// Leaves one word per letter
void persname::RemoveA (void)

{
list <string>::iterator new_end;
new_end = unique(PName.begin(), PName.end(), SamelLetter());
PName.erase(new_end, PName.end());

}

Because the unique algorithm does not truncate the list, the erase list
member function must be used.

9.3

REPEAT AN ACTION WITH ALL ELEMENTS IN A CONTAINER RANGE

The class sameLetter defines the function object that specifies the new
equality function. In the unique algorithm, two consecutive elements of
the list are considered equal if the result of this function is true.

The sameLetter function is also called a binary predicate.

Comments

To increase the functionality of certain algorithms, you can use predicates to
specify the criteria that the algorithm uses when processing data. A few
algorithms change their names by adding the _if suffix. Other algorithms are
overloaded and use the same names.

Predicates can be unary or binary depending on the number of arguments. A
predicate is a function that results in truth or falsehood depending on certain
conditions. Functions that change their names with _if, such as count_if and
find_if, accept unary predicates. Functions that use overloaded names, such
as unique, accept binary predicates.

The use of predicates dramatically increases the power of algorithms. It
almost doubles their number and provides a programmer with the ability to
embed his own functions in the standard algorithms.

COMPLEXITY

INTERMEDIATE

9.3 Howdo I...

Repeat an action with all
elements in a container range?

Problem
| want to be able to apply a certain function to an entire container or to the
range of a container. For example, | often have to convert an area from square
feet to square meters and print the results. Do | have to use for loops or is
there another way of coding?

Technique

The Standard Template Library has an analog of the C++ for statement. This is
the for_each algorithm that can be applied to any sequential container.
Moreover, the algorithm can work on any data structure that has a sequential
order similar to an array.

333 p

CHAPTER 9

m THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

The for_each algorithm applies the specified function in forward order,
from the beginning to the end of the range. In this How-To, you will write a
few examples to show the for_each algorithm functionality.

Steps

Using for_each algorithm with arrays

You want to create a program that converts square feet to square meters.
The original C++ program is written with arrays and uses the standard
C++ for statement.

// fel.cpp

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
const double factor = 0.09290304;
double area[]= {1200.0, 1080.78, 981.5, 224.70};

for (int i = 0; 1 < 4; i++)

{
cout << setprecision(2) << setiosflags(ios::fixed) <<
factor*area[i] << endl;
b
return 0;

}

To use the STL for_each algorithm, you have to define the function you
are going to use in the loop. Let’s create the printM function that will
convert the value in square feet to square meters and print the result.

Note that for_each is a nonmutative algorithm. It should not accept the
functions that change the content of the container.

// fel.cpp

#include <iostream>
#include <iomanip>

#include <algorithm>
using namespace std;

9.3

REPEAT AN ACTION WITH ALL ELEMENTS IN A CONTAINER RANGE

void PrintM(double valueF)

{
const double factor = 0.09290304;
cout << setprecision(2) << setiosflags(ios::fixed) <<
factor*valueF << endl;
}
int main()
{
double areaF[]= {1200.0, 1080.78, 981.5, 224.70};
for_each (areaF, areaF + 4, PrintM);
return 0;
}

The beginning and the end of the sorting range are areafF and areaF+4.
Note that areaF+4 points after the last element of the array.

The <algorithm> header file is required for all STL algorithms.

The output of the program should be

111.48
100. 41
91.18
20.88

Change arrays to vectors

In order to provide more flexibility, replace the array in your
implementation with the STL vector. The vector container is an
expandable sequential container that is analogous to the C++ array. The
main difference is that you don't have to specify the upper limit for the
vector. It expands itself as the new element is being added.

/| fe3.cpp

#include <iostream>
#include <iomanip>
#include <algorithm>
#include <vector>
using namespace std;

void PrintM(double valueF)
{
const double factor = 0.09290304;
cout << setprecision(2) << setiosflags(ios::fixed) <<
factor*valueF << endl;

CHAPTER 9

m THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

int main()

{

vector <double> areaF;
areaF.push_back(1200.0);
areaF.push_back(1080.78);
areaF.push_back(981.5);
areaF.push_back(224.70);

for_each (areaF.begin(), areaF.end(), PrintM);
return 0;

}

In order to use vectors in this program, you must include the <vector>
header file. Also, the vector initialization was changed. The vector is
initialized using the push_back function.

Because you haven't changed the data type of the data, don't make
changes in the Printm function. Therefore, the for_each function
remained the same too.

Trying to change the class with the nonmutating algorithm

As noted before, the data should not be changed with a nonmutating
algorithm. This is specified in the STL standard. However, not all
compilers check that the function used in the for_each algorithm does
not change the data. If you try to replace the printm function with the
following one

void PrintM(double &valueF)

{
const double factor = 0.09290304;
valueF = factor*valueF;
cout << setprecision(2) << setiosflags(ios::fixed) <<
valueF << endl;
}

you won't get any warnings if you run Microsoft Visual C++ 5. The code
will be compiled and the main function

// fel.cpp

#include <iostream>
#include <iomanip>

#include <algorithm>
using namespace std;

9.4

COMPARE TWO SEQUENCES

int main()

{
double areaF[]= {1200.0, 1080.78, 981.5, 224.70};

for_each (areaF, areaF + 4, PrintM);
for (int i= 0; i < 4; i++) cout << areaF[i] << endl;

return 0;

}

will produce the output

111.48
100. 41
91.18
20.88
111.48
100. 41
91.18
20.88

that confirms the changes.

Comments

STL provides a general algorithm that replaces the for loop for the containers.
The for_each algorithm applies a specified function to a range of a container.
Even if the range is specified with the iterators that point to the beginning and
to the end of it, and if you don’t know the number of elements in the range, the
for_each algorithm can handle such an approach.

The for_each algorithm has a linear complexity, which means it executes the
function a number of times proportional to the length of the range.

COMPLEXITY

INTERMEDIATE

9.4 Howdol...
Compare two sequences?
Problem

One common problem | have to solve while working with the STL containers is
comparing two ranges of sequences. What algorithms should | use to compare
the ranges? What is the difference between the equal and the mismatch
algorithms?

m CHAPTER 9
THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

Technique

The equal and mismatch algorithms carry out the same task. They compare the
ranges of sequences and find whether the ranges differ. The behavior of the two
algorithms is very similar. The difference between them is that equal simply
returns false if the two ranges differ. The mismatch algorithm returns the first
location where they differ.

This How-To discusses how the two algorithms are properly used.

Steps
Using the equal algorithm

Consider an example of data sets of integers for an interactive computer
game. You want to maintain the integers in the vector and consider the
vector a pattern for matching with other data structures. For example,
you want to know if the incoming data differs from the pattern that you
maintain.

In the program, keep the pattern in the pattern vector. Read the
incoming data in the inData vector, and compare the data with pattern.
You must make a few assumptions. First, in order to make the program
simpler, don't read the data. Instead, hardcode the inData initialization.
Second, assume that you already know that the proper range that could
match the incoming data starts with the pattern[1] element. You also
know that the length of inData will not exceed the length of the rest of
pattern.

// equal_a.cpp

#include <iostream>
#include <vector>

#include <algorithm>
using namespace std;

int main()

{
vector <int> pattern;
vector <int> inData;

vector <int>::iterator 1i;

pattern.push_back(12);
pattern.push_back(25);
pattern.push_back(33);
pattern.push_back(49);

9.4

COMPARE TWO SEQUENCES

inData.push_back(25);
inData.push_back(33);
inData.push_back(48);

i = pattern.begin();
i++;
if (equal(i, pattern.end(), inData.begin()))
cout << "The ranges are equal" << endl;
else
cout << "The ranges are not equal" << endl;

return 0;

}

The most interesting lines in this very short program are
i = pattern.begin();

i++;

if (equal(i, pattern.end(), inData.begin()))

The first line creates an iterator that helps to walk through the pattern
vector. The second line increments the iterator. (In a bigger program, you
would write some code that finds the beginning of the range in the
pattern that would be checked against InData.) The third line uses the
equal algorithm with three arguments. The first argument points to

the beginning of the pattern. It should start with the second element of
the pattern vector, where the i iterator points now. The second argument
points after the end of the range, and the end () member function of the
vector container is used for this purpose. The third argument points to
the beginning of the second range, which is compared with the first one.
You will use the begin() function of the vector container.

The output will show

The ranges are not equal
Using the mismatch algorithm

In the previous example, you were not interested in finding the difference
between the two ranges. The knowledge that the incoming range was the
same or was different from the pattern was sufficient. Now you want to
know which element makes this difference. For that reason, you are going
to change the equal algorithm to the mismatch algorithm.

m CHAPTER 9
THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

/1 equal_a.cpp

#include <iostream>
#include <vector>

#include <algorithm>
using namespace std;

int main()

{
vector <int> pattern;
vector <int> inData;

vector <int>::iterator i;

pattern.push_back(12);
pattern.push_back(25);
pattern.push_back(33);
pattern.push_back(49);

inData.push_back(25);
inData.push_back(33);
inData.push_back(48);

i = pattern.begin();
i++;
pair<int*, int*> result;

result= mismatch(i, pattern.end(), inData.begin());

if (equal(i, pattern.end(), inData.begin()))
cout << "The ranges are equal" << endl;

else
cout << "The different values are: " <<
*(result.first) << " and " <<
*(result.second) << endl;
return 0;

}

This example was written using the Microsoft Visual C++ version 5
compiler. If you use the Borland C++ 5 compiler, you have to include the
<utility> header file for pair definition.

Running the application now will show

The different values are 48 and 49
The syntax of the mismatch algorithms is interesting. In order to execute
it, you wrote the two lines:

pair<int*, int*> result;
result= mismatch(i, pattern.end(), inData.begin());

9.5

SEARCH FOR A SEQUENCE OF VALUES IN A CONTAINER

The first line defines a pair of two variables of the type int*. In general,
the pair is heterogeneous—the types of the variables shouldn't be the
same. A pair is similar to a structure: the first member in the pair is
referenced as result.first, and the second member is referenced as
result.second, where result is the name of the pair.

pair allows you to return the two values. The mismatch algorithm also
returns two values: the first occurrence of the different elements in the
ranges. If no such difference exists, the first member of the mismatch
algorithm result points after the end of the first range.

Comparison of the two cases

The equal and mismatch algorithms solve the same problem. Both
algorithms compare two ranges element by element. Using the equal
algorithm can be simpler because it does not need to define a pair of
resulting values. The mismatch algorithm returns the different values that
might be necessary for later use in the program.

Comments

Matching a range of data against another range of data is a very common task in
programming. The equal and mismatch algorithms provide this matching

capability.
COMPLEXITY
INTERMEDIATE
9.5 Howdol...
Search for a sequence of values in
a container?
Problem

For text processing applications, user interface design, and other data parsing, |
have to search for sub-sequences of data in sequences such as texts. | already
know how I can search for a word in a sequence of characters. Can | search for
a sequence of words in a text if the texts are vectors of words?

-

m CHAPTER 9
THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

Technique

The STL provides the search algorithm that searches for a range of data in
another range of data. The data should be of the same type. This How-To
describes an example that searches a sequence of words. The program keeps the
words in the vector container with the elements of the string type.

Another example extends the algorithm capabilities. The example shows
how you can use the search algorithm to compare the elements by applying a
special function. This How-To will search for a sub-sequence of words that start
with the same letters as the specified sequence of words.

Steps

Applying the search algorithm

In this How-To, you will create a program that searches for a word
combination in a quote from Oscar Wilde: “All art is quite useless.” The
first search will be done for the sequence quite useless.

// search.cpp

#include <algorithm>
#include <string>
#include <vector>
#include <iostream>
using namespace std;

int main()

{
vector <string> MainText;
vector <string> TempString;

vector <string>::iterator ij;

MainText.push_back("All");
MainText.push_back("art");
MainText.push_back("is");
MainText.push_back("quite");
MainText.push_back("useless");

TempString.push_back("quite");
TempString.push_back("useless");

i = search (MainText.begin(), MainText.end(),
TempString.begin(), TempString.end());
if (i == MainText.end())
cout << "The substring is not found" << endl;
else
cout << "The substring is found" << endl;

9.5

SEARCH FOR A SEQUENCE OF VALUES IN A CONTAINER

return 0;

}

The programming example given here is much simpler than a real
program. To maintain the sentence “All art is quite useless,” the MainText
vector is defined and filled in with the push_back function. The word
combination quite useless is being kept in another vector, TempString.
Both vectors have elements of the string data type; therefore, the

following header files were included:

#include <vector>
#include <iostream>

This example was created using Microsoft Visual C++ version 5. If you
use other compilers or older versions of the Microsoft compiler, you
might have to include the <algorithm.h>, <string.h>, <vector.h>, and

<iostream.h> header files.

The search algorithm in its simplest version takes four arguments. The
first two arguments specify the data range in the main sequence. In this
example, you want to search from the very beginning to the very end of
MainText. The second pair of the arguments specifies the range of the

sequence to search for.

The result of the search algorithm is an iterator that points to the
beginning of a sub-sequence in the main sequence that is equal to the
second sequence. In this example, the i iterator points to the element of
the main sequence that contains the word quite. If the search algorithm

fails, the result would point after the end of the main sequence.

If you run the program, it will show

The substring is found

on the computer screen.

Applying the search algorithm with a special comparison function

A simple search uses the equality operator or an overloaded equality
operator to compare the sequences. If you want to make the search more

sophisticated, you can specify another binary function for the
comparison.

EEEE—

m CHAPTER 9
THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

This case, you search for the word combination that starts with the same
letters as the given word combination. In other words, the equality
operator will be replaced with the following function:

#include <functional>
class WordCompare:binary_function <string, string, bool>

{
public:
bool operator()(const string& a, const string& b) {
if (a.at(@) == b.at(0))
return true;
else
return false;
}
}s

For binary_function support, you have to include the <functional>
header file.

Change the word combination you want to use as a search pattern. Search
for the sub-sequence that starts with the same letters as the word
combination quite unique.

// search.cpp

#include <algorithm>
#include <string>
#include <vector>
#include <functional>
#include <iostream>
using namespace std;

class WordCompare:binary_function <string, string, bool>
{
public:
bool operator()(const string& a, const string& b) {
if (a.at(@) == b.at(0))
return true;
else
return false;

};

int main()

{
vector <string> MainText;
vector <string> TempString;

vector <string>::iterator ij;

MainText.push_back("All");
MainText.push_back("art");
MainText.push_back("is");
MainText.push_back("quite");
MainText.push_back("useless");

L EE

ACCUMULATE DATA AND CREATE A SEQUENCE OF SUMS

TempString.push_back("quite");
TempString.push_back("unique");
i = search (MainText.begin(), MainText.end(),
TempString.begin(), TempString.end(), WordCompare());

if (1 == MainText.end())

cout << "The substring is not found" << endl;
else

cout << "The substring is found" << endl;
return 0;

}
If the program is run, the output will be

The substring is found

because the sentence “All art is quite useless” has a word combination
quite useless that starts with the same letters as quite unique.

The search function in this example accepts five arguments. The last one
is the function object that defines the comparison procedure.

Comments

The search algorithm is a powerful tool that can be used to search within data
containers. The search procedure can be expanded by the usage of a function
object that specifies the comparison procedure.

COMPLEXITY

9.6

INTERMEDIATE
How do I...

Accumulate all container
elements and create a sequence
of accumulated sums?

Problem

I want to accumulate data for my accounting program as a simple sum and as
an accumulated sum. In other words, | want to create a sequence of partial
sums in the given sequence. For another program, | want to be able to calculate
products of the given values and accumulate them. Is there a standard function
in the STL that helps me perform this task?

m CHAPTER 9
THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

Technique

The STL has a few algorithms that can accumulate data. The algorithms
discussed in this section are the accumulate and the partial_sum algorithms.
The modifications of the algorithms can use functions other than addition,
which increases their applicability.

The syntax of the algorithms is simple enough to allow a user to implement
them intuitively. This How-To discusses a few examples of the implementation
of these two algorithms.

Steps

Accumulating data using addition

The first example creates a sum for a set of transactions. The transactions
are represented with a vector container. The program simply calculates
the sum and shows it on the screen.

// accum.cpp

#include <iostream>
#include <algorithm>
#include <numeric>
#include <vector>
using namespace std;

int main()

{
vector <float> Transaction;
float InitValue= 0.0;
float ResultSum;

Transaction.push_back(18.56);
Transaction.push_back(-100.00);
Transaction.push_back(123.01);
Transaction.push_back(7610.23);
Transaction.push_back(-507.65);

ResultSum = accumulate (Transaction.begin(),
OTransaction.end(), InitValue);

cout << "The balance of the transations is "
<< ResultSum << endl;

return 0;

9.6

ACCUMULATE DATA AND CREATE A SEQUENCE OF SUMS

The program needs to include a few header files. <iostream> for the
cout, <vector> for the vector container support, and <algorithm> for
the usage of STL algorithms are files that you already used. However, in
this example you also need the <numeric> header file that supports
numeric algorithms, such as the accumulate algorithm. The compiler
directive

using namespace std;
is the usual addition to these standard header files.

The Transaction vector of float values will contain all transaction
amounts for your calculations. Initialize the vector using the push_back
member function of the vector container.

The accumulated value has two components. The first is the initial value
kept in the ResultSum variable. Set this value to @.e. Under different
circumstances, the value can be other than zero (usually it keeps the
balance of the previous financial period). The second component of the
accumulated value is the sum of the vector’s values. The accumulate
algorithm takes the first iterator in the range, which is
Transaction.begin() in this example, and takes all the values up to
the last iterator, which is Transaction.end(). If there is no data in the
container, the algorithm will return the initial value. Therefore, the
existence of the initial value is quite important for the algorithm’s
reliability.

Finally, when the program is running it shows the string

The balance of the transations is 7144.15
The result represents the balance of the transaction set.
Accumulating data using subtraction

For the same accounting application, change the task slightly. Now,
calculate expenses by subtracting them from the initial value. To do that,
you must make a few changes to the program.

// accum.cpp

#include <iostream>
#include <algorithm>
#include <numeric>
#include <vector>
#include <functional>
using namespace std;

CHAPTER 9

m THE STANDA

int

{

}

First

RD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

main()

vector <float> Transaction;
float InitValue= 10000.0;
float ResultSum;

Transaction.push_back(18.56);
Transaction.push_back(100.00);
Transaction.push_back(123.01);
Transaction.push_back(7610.23);
Transaction.push_back(507.65);

ResultSum = accumulate (Transaction.begin(),
OTransaction.end(), InitValue, minus <float>());

cout << "The balance of the transations is
<< ResultSum << endl;

return 0;

of all, based on the task, change the initial value and make all

transaction amounts positive. To calculate the result, use the accumulate
algorithm with the fourth argument that specifies the calculations. The
fourth argument can be any function object. Note that the algorithm

cons

equently takes the values and applies the function to the result. In

this case the steps in the processing of the algorithms are

of-N-g-N-

Result1 = InitValue—Value1

Result2 = Result1—Value2

Result3 = Result2—Value3

Result4 = Result3—Value4

Result5 = Result4—Value5

where Result1 to Result5 are the internal intermediate values, and
Value1 to value5 are the values of the Transaction vector elements.

To calculate the result, use the minus function from the STL. The function

is de

fined in the <functional> header file; therefore, you have to include

it into your code.

If yo

The

u run the program it will show

balance of the transations is 1640.55

9.6

ACCUMULATE DATA AND CREATE A SEQUENCE OF SUMS

The result represents the rest of the funds after the expenses are
calculated.

Creating accumulated sums

Now create another container that will keep the accumulated sums. In
other words, keep the values valuet, valuei+value2,
Value1+Value2+Value3, and so on.

/1 accum.cpp

#include <iostream>
#include <algorithm>
#include <numeric>
#include <vector>
using namespace std;

int main()

{
vector <float> Transaction;
vector <float> Sums(5);
vector <float>:: iterator ij;

Transaction.push_back(18.56);
Transaction.push_back(-100.00);
Transaction.push_back(123.01);
Transaction.push_back(7610.23);
Transaction.push_back(-507.65);

partial_sum (Transaction.begin(), Transaction.end(),
OSums.begin());

for (i = Sums.begin(); i!= Sums.end(); i++)
cout << *i << endl;

return 0;

}

The program works with the two vector containers. The first one is the
Transaction vector from the first example in this section. The vector is
initialized by the push_back vector function. The second container, Sums,
is intended to keep the accumulated sums. It is created in such a way that
the constructor makes space for the first five elements in it:

vector <float> Sums(5);

This is a very important point. If you did not create the elements in the
vector, your program would crash because the algorithm that you use
does not create new elements; it just fills in the existing ones.

m CHAPTER 9
THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

To create the sums, use the partial_sum algorithm. The algorithm has
three arguments. The first two arguments specify the range of the
container data to process, the third argument specifies the beginning of
the output container.

The output of the program is

18.56
-81.44
41.57
7651.8
7144.15

No wonder the last line results in the same value as the first example in
this How-To.

Creating accumulated products

Similar to the previous example, this example will accumulate the values.
However, now you create products in the output vector. The program will
calculate the values 1, 1*1/2, 1*1/2*1/3, and so on, and move them in
the Products vector.

// accum.cpp

#include <iostream>
#include <algorithm>
#include <numeric>
#include <functional>
#include <vector>
using namespace std;

int main()

{
vector <float> SourceValues;
vector <float> Products(5);
vector <float>:: iterator ij;

SourceValues.push_back(1.);

SourceValues.push_back(1./2.);
SourceValues.push_back(1./3.);
SourceValues.push_back(1./4.);
SourceValues.push_back(1./5.);

partial_sum (SourceValues.begin(), SourceValues.end(),
Products.begin(), multiplies <float>());

for (i = Products.begin(); i!= Products.end(); i++)
cout << *i << endl;

return 0;

9.7

SORT ELEMENTS IN A CONTAINER WITH DIFFERENT SORTING INDEXES

This example works with the Microsoft Visual C++ version 5 compiler. If
you use the Borland C++ 5 compiler, you have to change the multiplies
function object to the times function object. Currently, the STL considers
times obsolete.

The program uses the partial_sum algorithm with the four arguments.
The first two arguments specify the range that is processed for the source
data container. The third parameter specifies the first element of output
container. Note that you have to make some space for the output data
because the partial_sum function does not create the new output
elements, it uses the existing ones instead.

The output of the program is
]

0.5

0.166667

0.04166667
0.0833333

The values may slightly differ for different compilers.

Comments

The accumulate and the partial_sum algorithms belong to the group of
generalized numeric algorithms in the Standard Template Library. The
accumulate algorithm calculates a sum of the values of the given container
elements. A version of the algorithm can apply functions other than addition to
the values in the container. The partial_sum algorithm creates the consecutive
sums of the elements of the given container. Using functions other than
addition can also extend the functionality of this algorithm.

COMPLEXITY

ADVANCED
9.7 Howdol...
Sort elements in a container
using different sorting indexes?
Problem

| often create containers of different user-defined types. To maintain phone
books, | use a special class that describes a phone book entry. For some
applications, the entries can be very complicated and contain many fields. |

Sl

CHAPTER 9

——

THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

want to perform many operations with the phone book; | want to sort the data
using different fields. Can | specify different fields as sorting keys without
changing my class?

Technique

To sort a data container, you have to define a few parameters: the container
itself, the subset of the container that should be sorted, and the sorting order.
To define the sorting order you need to define the greater-than (or less-than)
relational operator on the container elements. In other words, you should
always be able to say whether an element is greater than another element.

You are going to apply the sort algorithm to the class that specifies phone
book entries and enables simple manipulations with the class data. To change
the sorting keys, the program will change the less-than function from the <
operator to another one.

Steps

Declaring the data and relational operations

First of all, let's write the phone book class declaration.

// PhBook.h - this is a header file with
// declaration of PhBook class

#include <string>
using namespace std;

class PhBook
{
public:
PhBook () ; // default constructor
PhBook (string InLastName, string InFirstName,
string City, string AreaCode, string Phone);
~PhBook () ; // destructor

//0ften used comparison operators

bool operator==(const PhBook) const;
bool operator>(const PhBook) const;
bool operator<(const PhBook) const;

//Seldom used comparison functions
bool Equal(const PhBook) const;

bool GreaterThan(const PhBook) const;
bool LessThan(const PhBook) const;

//Display functions
void DisplayPhone() const;
void DisplayCity() const;

W R
SORT ELEMENTS IN A CONTAINER WITH DIFFERENT SORTING INDEXES

private:
string LastName;
string FirstName;
string City;
string AreaCode;
string Phone;

b

The phone book entry described in the class is not very complex. It
consists of last name, first name, city, area code, and phone fields. Real
phone books might also have middle names or initials, addresses, phone
extensions, fax numbers, sometimes email addresses, and many other
fields. The code specified string as a data type for all fields. You could
use a numeric data type for area codes or phone numbers, but it does not
make sense because you are not doing arithmetic operations on them.
The string data type needs the string include file that comes with the
Microsoft Visual C++ compiler. Other compilers might use other include
files such as string.h or cstring.h.

Besides two constructors and a destructor, the class declaration specifies
overloaded equality and relational operators: ==, <, and >. A complete
class declaration needs three more overloaded operators: !=, >=, and <=.

The overloaded operators are used to provide comparison algorithms for
the most common operations, such as comparison of last names and first
names only. To perform more precise routines, declare three member
functions: Equal, GreaterThan, and LessThan. The functions are similar
to the equality and relational operators, but they are used to compare all
fields in two phone book entries.

Finally, you declared display functions. The first function, bisplayPhone,
is intended to display the name and the phone number including the area
code of phone book entries. The second function, DisplayCity, will
show the name and the city of the entries.

Defining the class member functions

The class definition is located in a separate file, phbook.cpp. The
constructors simply initialize the private data members, and the
destructor is empty.

// PhBook.cpp
// PhBook class definition

#include <iostream>
#include <string>
using namespace std;

N

CHAPTER 9

THE STANDARD TEMPLATE LIBRARY’S

#include "phbook.h"

PhBook: : PhBook ()

{
LastName= "";
FirstName= "";
City= "";
AreaCode= "";
Phone= "";

}

PhBook: :PhBook(string InLastName, string InFirstName,

INCLUDED ALGORITHMS

string InCity, string InAreaCode, string InPhone)

{
LastName= InLastName;
FirstName= InFirstName;
City= InCity;
AreaCode= InAreaCode;
Phone= InPhone;
}
PhBook: : ~PhBook ()
{
}
bool PhBook::operator==(const PhBook InPhBook) const
{
if (LastName != InPhBook.LastName) return false;
if (FirstName != InPhBook.FirstName) return false;

return true;

}

bool PhBook::operator>(const PhBook InPhBook) const
{
if (LastName > InPhBook.LastName) return true;
if (LastName < InPhBook.LastName) return false;
if (LastName == InPhBook.LastName)
{
if (FirstName > InPhBook.FirstName) return true;
else return false;

}

return true;

}

bool PhBook::operator<(const PhBook InPhBook) const
{
if (LastName < InPhBook.LastName) return true;
if (LastName > InPhBook.LastName) return false;
if (LastName == InPhBook.LastName)

W EEE——
SORT ELEMENTS IN A CONTAINER WITH DIFFERENT SORTING INDEXES

if (FirstName < InPhBook.FirstName) return true;
else return false;
}
return false;

}

bool PhBook::Equal(const PhBook InPhBook) const

{

if (LastName != InPhBook.LastName) return false;
if (FirstName != InPhBook.FirstName) return false;
if (City != InPhBook.City) return false;

if (AreaCode != InPhBook.AreaCode) return false;
if (Phone != InPhBook.Phone) return false;

return true;

}
bool PhBook::GreaterThan(const PhBook InPhBook) const
{
if (LastName > InPhBook.LastName) return true;
if (LastName < InPhBook.LastName) return false;
if (LastName == InPhBook.LastName)
{
if (FirstName > InPhBook.FirstName) return true;
if (FirstName < InPhBook.FirstName) return false;
if (FirstName == InPhBook.FirstName)
{
if (City > InPhBook.City) return true;
if (City < InPhBook.City) return false;
if (City == InPhBook.City)
{
if (AreaCode > InPhBook.AreaCode) return true;
if (AreaCode < InPhBook.AreaCode) return false;
if (AreaCode == InPhBook.AreaCode)
{
if (Phone > InPhBook.Phone) return true;
if (Phone < InPhBook.Phone) return false;
if (Phone == InPhBook.Phone) return true;
else return false;
}
}
}
}
return false;
}

bool PhBook::LessThan(const PhBook InPhBook) const
{
if (LastName < InPhBook.LastName) return true;
if (LastName > InPhBook.LastName) return false;
if (LastName == InPhBook.LastName)

m CHAPTER 9
THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

if (FirstName < InPhBook.FirstName) return true;
if (FirstName > InPhBook.FirstName) return false;
if (FirstName == InPhBook.FirstName)
{
if (City < InPhBook.City) return true;
if (City > InPhBook.City) return false;
if (City == InPhBook.City)
{
if (AreaCode < InPhBook.AreaCode) return true;
if (AreaCode > InPhBook.AreaCode) return false;
if (AreaCode == InPhBook.AreaCode)
{
if (Phone < InPhBook.Phone) return true;
if (Phone > InPhBook.Phone) return false;
if (Phone == InPhBook.Phone) return true;
else return false;

}
}

return false;

}

void PhBook::DisplayPhone() const

{
string FullName, FullPhone;
FullName = LastName + ", " + FirstName;
FullPhone = "(" + AreaCode + ")" + Phone.substr(0,3)
O + "-" + Phone.substr(3,4);
cout << FullName << ": " << FullPhone << endl;

}

void PhBook::DisplayCity() const
{

string FullName;
FullName = LastName + ", " + FirstName;
cout << FullName << ": " << City << endl;

}

This example uses two sets of comparison functions. The first set is
presented by overloaded equality and relational operators (==, >, and <).
These functions compare the last name and the first name fields in the
phone book entries; this set of functions is used most often. The second
set is presented by member functions Equal, GreaterThan, and
LessThan. The functions compare all fields in the phone book record and
are intended to be used rarely. Therefore, less convenient names are
designated for these functions.

W | 357 p
SORT ELEMENTS IN A CONTAINER WITH DIFFERENT SORTING INDEXES

To initialize the objects of the PhBook class, use the constructor

PhBook: :PhBook(string InLastName, string InFirstName,
string InCity, string InAreaCode, string InPhone)

To display the objects on the computer screen, use the bDisplayPhone and
DisplayCity functions.

Preparing simple sorting

For sorting, the last and first names of a person are considered as one
entity. The phone book is not usually sorted by last names only, and I can
barely imagine that somebody wants to sort the phone book by first
names. In the first example, you want to sort phone book entries by last
name and then by first name. You want to arrange the entries in
alphabetical order, and are not interested in the fields other than the
name fields.

In other words, it is sufficient to use the overloaded operator < to specify
the sorting order. For the objects defined as

PhBook A, B;
if
A<B

is true, the A object should be before the B object in the sorted sequence
of PhBook objects.

The sort algorithm, which uses the < relational operator (or overloaded <
operator) to determine the ordering, has a quite simple syntax:

void sort(RandomAccessIterator first,
ORandomAccessIterator last);

The first and the last random access iterators specify the range in the
data container that should be sorted. The assumptions that the algorithm
makes are

* The container has random access to its elements between the two
iterators. It is common to specify the range with the notation
[first, last).

e The operator < is defined for the class. The sort algorithm uses this
operator to determine the ordering in the container.

For the sort algorithm, you have to include the file algorithm, which
works fine with Microsoft Visual C++. Other compilers might need
algorithm.h, algo.h, or other header files.

CHAPTER 9

m THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

Testing the sorting

The following programming code shows how you can apply the simple
version of the sort algorithm to sort vectors using the overloaded <
operator to specify the sorting order.

// phbtest.cpp

#include <iostream>
#include <vector>

#include <algorithm>
using namespace std;

#include "phbook.h"

int main()

{

}

vector <PhBook> MyPhoneBook;

// initialize phone book lines

PhBook PBLine1("Smith", "Robert", "Portland, OR", "503",
0 "2027656") ;

PhBook PBLine2("Smith", "John", "Seattle, WA", "206",
0"7681290") ;

PhBook PBLine3("Barney", "Tom", "Eugene, OR", "541",
0"7682322");

PhBook PBLine4("Anderson", "Peter", "San Diego, CA", "619",
0"5451551");

PhBook PBLine5("Smith", "John", "New York, NY", "212",
0 "1234567");

/] set up vector values

MyPhoneBook.push_back (PBLinel);
MyPhoneBook.push_back (PBLine2);
MyPhoneBook.push_back (PBLine3);
MyPhoneBook.push_back (PBLine4);
MyPhoneBook.push_back (PBLine5);

sort (MyPhoneBook.begin(), MyPhoneBook.end());

// display the vector after sorting

vector<PhBook>::iterator i;

for (i = MyPhoneBook.begin(); i != MyPhoneBook.end(); ++i)
i->DisplayPhone();

return 0;

In addition to the algorithm header file, you have to include the vector
header file, which supports vector containers.

W EEEE—
SORT ELEMENTS IN A CONTAINER WITH DIFFERENT SORTING INDEXES

The program defines the MyPhoneBook vector and adds five lines to it. The
lines are added to the back of the container using push_back functions.
To specify the sorting range, use begin and end functions that return
iterators setting up all elements of the container for the sorting. The
following line applies the sort algorithm:

sort (MyPhoneBook.begin(), MyPhoneBook.end());

The sorted vector is displayed using the DisplayPhone member function
of the PhBook class:
vector<PhBook>::iterator ij;

for (i = MyPhoneBook.begin(); i != MyPhoneBook.end(); ++i)
i->DisplayPhone();

All elements of the vector are displayed in the natural order. The range is
specified with iterators that start from MyPhoneBook.begin() and finish
with MyPhoneBook.end (). The latter iterator points beyond the last
element in the container.

The output of the program shows that the algorithm sorted the phone
book entries using only the name fields:

Anderson, Peter: (619)545-1551

Barney, Tom: (541)768-2322

Smith, John: (206)768-1290

Smith, John: (212)123-4567
Smith, Robert: (503)202-7656

The output that was produced on my computer with Microsoft Visual
C++ version 5 kept the original order of the equal records

Smith, John: (206)768-1290
Smith, John: (212)123-4567

However, this behavior is not necessary. To make sure that the relative
order of equal elements remains unchanged, use the stable_sort
algorithm instead of the sort algorithm:

stable_sort(MyPhoneBook.begin(), MyPhoneBook.end());
Determine the ordering by other means than the < operator

Very often, you will want to sort the records in your phone book in
another order. You might want to sort the records by cities first, and then
by names or by area codes. Let’s write a program that sorts the phone
book according to the LessThan function in the PhBook class.

m CHAPTER 9
THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

The STL requires that the ordering function is defined with a function
object—a class that defines the function-call operator (operator()).

class NameCompare:binary_function <PhBook, PhBook, bool>

{
public:
bool operator()(const PhBook& a, const PhBook& b) {
return (a.LessThan(b));
}
s

In order to use binary_function, you have to include the <functional>
header file.

Now you can change the sort statement in the phbtest program.

/1 phbtest.cpp

#include <iostream>
#include <vector>
#include <algorithm>
#include <functional>
using namespace std;

#include "phbook.h"

class NameCompare:binary_function <PhBook, PhBook, bool>
{
public:
bool operator()(const PhBook& a, const PhBook& b) {
return (a.LessThan(b));
}
};

int main()

{
vector <PhBook> MyPhoneBook;

// initialize phone book lines

PhBook PBLinei1("Smith", "Robert", "Portland, OR", "503",
0"2027656") ;

PhBook PBLine2("Smith", "John", "Seattle, WA", "206",
0"7681290") ;

PhBook PBLine3("Barney", "Tom", "Eugene, OR", "541",
0 "7682322");

PhBook PBLine4("Anderson", "Peter", "San Diego, CA", "619",
0"5451551");

PhBook PBLine5("Smith", "John", "New York, NY", "212",
0"1234567")

W G
SORT ELEMENTS IN A CONTAINER WITH DIFFERENT SORTING INDEXES

// set up vector values

MyPhoneBook.push_back (PBLinel);
MyPhoneBook.push_back (PBLine2);
MyPhoneBook.push_back (PBLine3);
MyPhoneBook.push_back (PBLine4);
MyPhoneBook.push_back (PBLine5);

// sort the vector
sort (MyPhoneBook.begin(), MyPhoneBook.end(), NameCompare());

// display the vector after sorting
for (int i = MyPhoneBook.begin(); i != MyPhoneBook.end(); ++i)
i->DisplayCity();

return 0;

Comments

In order to implement a sorting order for a class, you have to do just a few
steps:

e (Create the class that has random access to its elements.

= Define the < operator on the class data. This provides you with the
default sorting order for the sort algorithm.

If you want to use a sorting order other than specified with the < operator:

= Develop a member function that specifies the sorting order in the class.

« In the module that calls the sort algorithm write the code for a function
object; that is, a class that defines the function-call operator
(operator()).

« Apply the function object to the sort function.

Other amendments to the program could be to use other sort algorithms
that provide stable or partial sorting.

m CHAPTER 9
THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

COMPLEXITY

ADVANCED
9.8 Howdo l...
Change the order of the container
elements?
Problem

For virtually all large applications with STL containers and even simpler data
structures, | want to reorder the sequence of elements. | want to shuffle the data
randomly and order the elements according to certain rules. What types of data
reordering are implemented in the STL? Which algorithms can | use to
reorganize my data?

Technique

STL algorithms that change the data container are called mutating algorithms. A
few mutating algorithms can reorder container elements. The algorithms change
the sequence of elements in a container or another data structure without
changing the element values. This How-To discusses the rotate, reverse, and
random_shuffle algorithms.

Two more complicated algorithms are the partition and the
stable_partition algorithms. The algorithms apply a predicate to a given
sequence. If the predicate returns true for an element, the element goes to the
beginning of the sequence. If the predicate returns false, the element goes to
the end of the sequence. In other words, the algorithms reorder the sequence in
such a way that the elements that satisfy the predicate precede the elements that
don't satisfy the predicate. The stable_partition algorithm also keeps the
relative order in both parts of the reordered sequence.

Steps

Rotating a sequence

To rotate a sequence of elements, let’s first create the sequence. This
example uses a simple container, a vector of integers. To support the STL
container, you have to include the <vector> header file. | used the
Microsoft Visual C++ 5 compiler; therefore, you should provide the using
namespace std; directive as well.

#include <vector>
using namespace std;

9.8

CHANGE THE ORDER OF THE CONTAINER ELEMENTS

The following code defines the vectExample vector and fills it in with
four elements: 1, 2, 6, 7.

/] Vector definition
vector <int> VectExample;

// Filling in the container
VectExample.push_back (1);
VectExample.push_back (2);
VectExample.push_back (6);
VectExample.push_back (7);

To rotate the given sequence on integers, use the rotate algorithm. The
rotate algorithm takes three iterators as arguments. The first argument
specifies the beginning of the sequence. The second argument specifies

the starting location of the rotating elements, the last argument specifies
the end of the sequence. For example, if the algorithm is specified as

rotate (First_Iterator, Middle_Iterator, Last_Iterator)

the algorithm will move the *Middle_Iterator element to the
First_ Iterator position, the *(Middle Iterator + 1) element to the
First Iterator + 1 position, and so on.

In this example, you want to move the first element to the back of the
sequence. To do so, you have to move the second element to the first
position, the third element to the second position, and so forth. The
following code does just that:

// Temporary iterator definition

vector <int>::iterator iTemp;

// Rotate the sequence: move the first element

/1 to the end

iTemp = VectExample.begin();

iTemp++;

rotate (VectExample.begin(), iTemp, VectExample.end());

This code assigned the iterator to the beginning of the vector to the iTemp
temporary iterator, and then moved the iterator to the second element by
executing the ++ operator.

Reversing the order of a sequence

The same example will be used to discuss the reverse algorithm. This
algorithm reverses a range of elements. The algorithm takes two
parameters: the iterator that points to the beginning of the range and the
iterator that points the end of the range.

CHAPTER 9

m THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

In this example, you want to reverse the order of the whole sequence.
Therefore, use the begin() and the end() functions of the vector.

The code looks very simple:

// Reverse the order of the elements
reverse (VectExample.begin(), VectExample.end());

and it certainly is.
Randomly shuffling a sequence

When | read about shuffling the data, the first thing I think about is a
gambling application. However, shuffling the data is much more
important. It is used in modeling physical processes, in mathematical
calculations, and in estimation of missile trajectories, among other things.

The STL uses the random_shuffle algorithm to randomly shuffle the
data. The algorithm yields uniformly distributed results; that is, the
probability of any particular ordering is 1/N!. The simple version of the
algorithm takes two arguments: the iterators that specify the beginning
and the end of the range. The more advanced version of the algorithm
needs one more argument: the random number generator, a special
function object.

This example shows the simple version of the algorithm that uses the
internal random number generator:

// Randomly shuffle the sequence
random_shuffle (VectExample.begin(), VectExample.end());

The example shuffles the data in the entire vector.
Testing the rotate, reverse, and random_shuff1le algorithms

Now you are ready to write a small program that uses all the algorithms.
To display the result of an algorithm, the program will use the following
code:

for (i= VectExample.begin(); i != VectExample.end(); ++i)
cout << *i << endl;

where i is an iterator defined as

vector <int>::iterator i;

9.8

CHANGE THE ORDER OF THE CONTAINER ELEMENTS

Last but not least, include the <algorithm> header file to your program.
// order.cpp

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

int main()
{
// Vector and iterators definition
vector <int> VectExample;
vector <int>::iterator i;
vector <int>::iterator iTemp;

// Creating the container
VectExample.push_back (1);
VectExample.push_back (2);
VectExample.push_back (6);
VectExample.push_back (7);

cout << "Original sequence:" << endl;
for (i= VectExample.begin(); i != VectExample.end(); ++1i)
cout << *i << endl;

// Rotate the sequence: move the first element

// to the end

iTemp = VectExample.begin();

iTemp++;

rotate (VectExample.begin(), iTemp, VectExample.end());

cout << "Rotated sequence:" << endl;

for (i= VectExample.begin(); i != VectExample.end(); ++1i)
cout << *i << endl;

// Reverse the order of the elements

reverse (VectExample.begin(), VectExample.end());

cout << "Reversed sequence:" << endl;

for (i= VectExample.begin(); i != VectExample.end(); ++1)
cout << *i << endl;

// Randomly shuffle the sequence

random_shuffle (VectExample.begin(), VectExample.end());

cout << "Shuffled sequence:" << endl;

for (i= VectExample.begin(); i != VectExample.end(); ++1i)
cout << *i << endl;

return 0;

CHAPTER 9

m THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

The random_shuffle algorithm can produce different results depending
on the internal random number generator. The rest should show the same
lines for all compilers. After | compiled the program with the Microsoft
Visual C++ 5 compiler and ran the program, my computer showed the

following result:

Original sequence:

1
2
6
7
Rotated sequence:
2
6
7
1

Reversed sequence:

1
7
6
2

Shuffled sequence:

7

o = N

Reordering a sequence according to a predicate

In this example, let's separate odd numbers from even numbers. To see
how to move the odd numbers before the even numbers, examine the

following program:

/] part.cpp

#include <iostream>
#include <algorithm>

#include <vector>

#include <functional>

using namespace std;

int main()

{

// Vector and iterators definition
vector <int> VectExample;
vector <int>::iterator 1i;

// Creating the container
VectExample.push_back (1);
VectExample.push_back (2);
VectExample.push_back (6);
VectExample.push_back (7);

9.8

CHANGE THE ORDER OF THE CONTAINER ELEMENTS

cout << "Original sequence:" << endl;
for (i= VectExample.begin(); i != VectExample.end(); ++1i)
cout << *i << endl;

partition (VectExample.begin(), VectExample.end(),
bind2nd (modulus<int>(), 2));
cout << "0Odd numbers first:" << endl;
for (i= VectExample.begin(); i != VectExample.end(); ++1i)
cout << *i << endl;

return 0;

}

The program creates the same vector as in the previous example. The odd
vector elements are separated from the even elements using the
partition algorithm. The algorithm takes three arguments. The first and
the second arguments specify the sequence range. In this case, you want
to apply the algorithm to the whole vector from vectExample.begin() to
VectExample.end (). The third argument specifies the predicate. Apply
the modulus operation that returns o (false) if the element is even and

1 (true) if the element is odd.

My compiler produced the following result:

Original sequence:
1
2
6
7
0dd numbers first:
1

N o N

The result might vary for other compilers. However, the important thing
is that the partition algorithm does not preserve the relative order of the
even and odd elements. In the original sequence, 2 precedes 6. In the
result sequence, 2 follows 6.

To preserve the order, you can use the stable partition algorithm. If
you change the statement with the partition algorithm in the
example to

stable_partition (VectExample.begin(), VectExample.end(),
bind2nd (modulus<int>(), 2));

m CHAPTER 9
THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

the result will be

Original sequence:
1
2
6
7
0dd numbers first:
1

o NN

Comments

The mutating algorithms include a few reordering algorithms. This How-To
discusses their use with the Microsoft Visual C++ 5 compiler. The Borland C++
5 compiler uses the same syntax of the algorithms and the same filenames for
the header files. However, other compilers might use <algorithm.h> or
<algo.h> instead of the <algorithm> header file, and <vector.h> instead of
the <vector> file.

PART 1V
ERROR HANDLING

_ CHAPTER 10
C-STYLE ERROR

HANDLING

C-STYLE ERROR
HANDLING

How do I...

10.1 Handle runtime errors in my programs?

10.2 Use the Standard C Library functions perror and
strerror and the predefined C macros to report
runtime errors in my programs?

10.3 Use assert to catch errors in my code when
running in debug mode?

10.4 Use raise and signal to indicate errors in my
programs?

10.5 Use abort to terminate my application if a serious
error occurs?

10.6 Use exit and atexit together to perform some
action when my program terminates normally?

10.7 Detect errors that occur when reading from or
writing to a file using the file functions provided
with the Standard C Library?

10.8 Use setjmp and longjmp to maintain state when

handling errors?

CHAPTER 10

10.9

10.1

10.2

10.3

C-STYLE ERROR HANDLING

Use a C++ class to handle runtime errors in a more
maintainable fashion?

By now, you're an expert C++ programmer. Although this might be true, you
have no doubt run into errors in your code. Even the most knowledgeable C++
programmer has to account for situations for which he or she has no control.
These errors might be caused by users entering incorrect data or problems with
other systems on which your program is dependent. In any case, many prob-
lems are bound to arise in the process of executing your program.

That is where error handling comes into play. When designing and coding
your application, you must take into account these situations that might arise.
When these problems occur, your code has to take care of them. Should it
display a message for the user, write a message to a log file, or abort the
program completely? The decision of what to do is totally up to you as the
designer and developer of the application. Your decision will depend on the
specific situation at hand.

Although determining what to do and when to do it are decisions you will
have to make on your own, knowing how to do it is the purpose of this
chapter. This chapter will discuss ways to handle errors that will work in C and
C++ programs and some ways that do not work well in C++ programs.
Although this is a C++ book, C-type error-handling techniques are discussed so
you will know what you are dealing with if you run into them in older C and
C++ programs.

Handle Runtime Errors in My Programs

This How-To covers the basic method used to handle runtime errors in C
programs—returning error codes from functions or methods. This method will
be applied to C++ in the sample code fragments that are presented.

Use the Standard C Library Functions perror and
strerror and the Predefined C Macros to Report
Runtime Errors in My Programs

The Standard C Library provides many functions to assist you when handling
errors from Standard C Library routines you might be using in your C++
programs. This How-To will introduce you to two of these functions: perror
and strerror. This How-To also discusses the purpose behind the errno global
variable and some predefined macros that can be used when reporting errors.

Use assert to Catch Errors in My Code When
Running in Debug Mode

After developing your application, it is necessary to test it before you release
your final product. When testing, you want to be alerted to any crucial errors

CHAPTER 10

10.4

10.5

10.6

10.7

10.8

C-STYLE ERROR HANDLING

that have occurred. This How-To will discuss how to use the Standard C
debugging utility assert to test conditions in your code and raise errors if
those conditions are not met.

Use raise and signal to Indicate Errors in My
Programs
When a serious error occurs, returning an error code from a function might not

be the best thing to do. This How-To will talk about how to use the Standard C
functions raise and signal to handle errors in your programs.

Use abort to Terminate My Application If a Serious
Error Occurs

In the unfortunate situation in which a serious error occurs and you can't
recover from it, it might be necessary to terminate your application. This
How-To will discuss how to use the abort function to terminate your
application. This How-To will also discuss how to perform some action, such as
clean up, when your application terminates abnormally.

Use exit and atexit Together to Perform Some
Action When My Program Terminates Normally
When your application is terminated normally, you might wish to perform
some action, such as writing a log to a file. This How-To will talk about how to
use exit to terminate your application normally and atexit to specify a
function to be called whenever your application terminates normally.

Detect Errors That Occur When Reading from or
Writing to a File Using the File Functions Provided
with the Standard C Library

Errors can occur in the process of reading from or writing to a file when using
the file functions included with the Standard C Library. This How-To will show
you how to detect whether an error has occurred when reading or writing to a
file by using the ferror function.

Use setjmp and longjmp to Maintain State When
Handling Errors

Another way to handle errors in programs is by performing non-local jumps.
When doing so, you need to save the state of the stack environment. This
How-To will discuss how to perform non-local jumps and save the stack envi-
ronment using setjmp and longjmp. The How-To will discuss why it is not safe
to use these functions in C++ programs.

CHAPTER 10

C-STYLE ERROR HANDLING

10.9 Use a C++ Class to Handle Runtime Errors in a More

Maintainable Fashion

Returning error values from functions is a very efficient way to handle errors.
However, the meanings of the return values of many different functions can be
very difficult to keep track of. They are also very difficult to maintain, especially
if you are not the original developer of the code and the comments are
nonexistent or poorly written. This How-To will discuss how to create your
own C++ class to use when reporting errors from functions or methods.

COMPLEXITY

BEGINNING
10.1 How doll...

Handle runtime errors in my
programs?

Problem
I want to be able to handle errors that occur in my programs and either recover
from them or report them and exit my program gracefully. How can | do this in
C and C++ programs?

Technique

This How-To will discuss the basic method used to handle runtime errors in C
programs—returning error codes from functions or methods.

When an error is encountered in a typical function, the best thing to do is to
handle the error and proceed. However, this might not be possible. For
example, if you allocate some memory using malloc, calloc, OF new, and your
system is out of memory, you might not be able to continue execution of your
program. In some cases, you might be able to free some memory that is not
being used and continue.

But what if you are calling a function that runs into an error such as a
problem allocating memory or in accessing a database? If that function does not
return a code to indicate the success or failure of the function, how will callers
of the function be able to determine what action to take?

Worse yet, what if the function allocating the memory or accessing the
database just decides to shut down the application if an error occurs? This
could be disastrous.

10.1

HANDLE RUNTIME ERRORS IN MY PROGRAMS

Most applications must be able to recover from errors. Many real-time
systems, such as point-of-sale systems in stores, access databases to get
up-to-the-minute information, such as product prices or information.
Therefore, it is important for functions that make up an application to return
values that indicate the success or failure of the function. Using these return
codes, callers of this function will have the chance to recover from an error. In a
case in which recovery is not possible, at least the caller will be able to write to
a log file and shut down the application gracefully.

Steps

Analyze each function in your application and determine the set of return
codes for each function. For example, in the point-of-sale system, a
function that adds records to a database (addrRecord for example) might
return the values listed in Table 10.1.

Table 10.1 Return Values from the addRecord Function

RETURN VALUE DESCRIPTION

-1 Database could not be opened.
-2 Record could not be added.

0 Record added successfully.

1 Duplicate record added

Trap error conditions in your functions. This means it might be necessary
to test the return values of other functions your function is calling. For
example, in the addRecord function, one necessary step that might need
to be taken is opening the database. If the database cannot be opened, the
caller might wish to attempt this operation again on a backup database.
Therefore, the addrRecord function must tell the caller that an error has
occurred. The following is code that would appear in the addRecord
function. This code tests the opening of a database and returns -1 as
indicated in Table 10.1.

if (open(databaseName) < 0)
return -1;

Maintain return values throughout your function. Your function might
perform many actions. Because it's best to return from a function in only
one place, return error and success values only at the end of your
function. The addrecord function will open the database, search for an
existing record, and add the record to the database. This application

CHAPTER 10

C-STYLE ERROR HANDLING

allows duplicate records to be added to the database. However, if a
duplicate record is found, addRecord tells the caller by returning a
success code of 1 as indicated in Table 10.1. The following is the entire
code for the addRecord function. This function just happens to be a
method in the ProductDatabase class.

int ProductDatabase::addRecord(DatabaseType dbType,
const ProductRecord& record)

{
int retval = 0;
bool openedByMe = false;

// Open the database if it's not already open.
if (_hDatabase == NULL)

{
if (open(_databases[dbType]) < 0)

{
retval = -1;

}

openedByMe = true;

if (retval == 0 && _hDatabase != NULL)

if (findProduct(record.prodNumber()) == 0)
retval = 1;

// Attempt to add the record;
/1
if (fprintf(_hDatabase, "%ld %s\n", record.prodNumber(),
Orecord.prodName()) == 0)
retval = -2;

// Close the database.
if (openedByMe)
close();

}

return retval;

}

Handle the error returned from the function. The following code calls the
addRecord function and then tests the return value. It then displays a
message to tell the user what happened.

void main()

{
ProductDatabase db("c:\\databases\\primary.db",
"c:\\databases\\secondary.db");

Product product("Joe's Best Detergent");

10.1

HANDLE RUNTIME ERRORS IN MY PROGRAMS

int retval;
retVal = db.addRecord(ProductDatabase::Primary, product);

if (retval == -1)
{
cout << "Error opening Primary database."
<< endl;

retval = db.addRecord
O (ProductDatabase: :Secondary, product);

if (retval == -1)
{
cout << "Error opening Secondary database."
<< endl;

if (retval != -1)

if (retval == -2)
{

cout << "Error adding record number "
<< product.prodNumber() << endl;

}
else if (retVal == 1)

{
cout << "Added duplicate record number "
<< product.prodNumber() << endl;

else

cout << "Added record number "
<< product.prodNumber() << endl;

How It Works

The addRecord method belongs to the ProductDatabase class, which is a class
that contains functions to open and close a database as well as add, retrieve,
and delete records. This class maintains two databases. If the first database fails,
the second one will be used. In this simple example, the databases are just flat
files.

To create an instance of the class, the code must pass the names of the
databases to be used for the primary and secondary databases. The constructor
for the ProductDatabase class does not open the databases; it just stores the
names in an array. This is a real-time system, so the databases should not be
open longer than they have to be.

CHAPTER 10

C-STYLE ERROR HANDLING

Next, the code creates an instance of the Product class. This is a very simple
class that represents a product to be added to the database.

Then call the addrRecord method passing the enumerated value Primary and
the product that was just created. The Primary enumerated type tells
addRecord which database to use when adding the record.

The addRecord method first checks to see whether the database is already
open by checking to see whether the database handle member variable,
_hDatabase, is null. The addRecord method can be called from a method that
already has the database open. For this reason, you don't need to open it if it is
already open.

Next, addRecord attempts to open the database indicated by the enumerated
type that was passed to this function. As mentioned previously, the database
names are kept in an array. The enumerated type indicates the position in the
array of the database to open. If the open operation fails, -1 is stored in the
local integer, retval, which will be returned to the caller.

If the database was opened, addRecord tries to find a duplicate record in the
database. Because this system allows duplicate records to be added to the
database, this operation is just for reporting purposes. In systems that do not
allow duplicate records, this would be an error condition. If a duplicate record
is found, retval is set to a value of 1. This is a warning code that tells the caller
that a duplicate record was added to the database.

Then, an attempt is made to add the record to the database by calling a
database-specific function to add the record. In this sample code, the database
is a flat file, so simply call fprintf to write the database record to the file. If
this function fails, retval is set to -2. You might wish to set retval to the
return value of the database-specific function you decide to use.

If the database was opened in the addrRecord method and not by the caller,
the database is closed.

Finally, retval is returned to the caller to indicate the success or failure of
the add operation.

Going back to the calling function, main, you'll see that the code tests the
value returned from the call to addRecord and displays a message indicating the
success or failure of the operation. If the return value indicates that the Primary
database could not be opened (-1), the program attempts the operation again
on the Secondary database.

The preceding code demonstrates how to handle errors in your programs. To
see this code in action, compile and run the sample code for this chapter that is
included on the CD that comes with this book.

10.2

USE PERROR AND STRERROR TO REPORT RUNTIME ERRORS

Comments

One thing to note about returning error codes from functions is that these
return values are the decision of the developer of that particular function. This
means return values from a function developed by one person might be totally
different values than a function developed by another person. As you can see,
the situation can become very confusing very fast.

For that reason, it is a good idea to develop a set of standards for return
values that all developers on a project can follow. One possibility is to use
negative return values to indicate an error condition, o to indicate success, and
positive values to indicate success with warnings.

But this still doesn't fix the problem completely. A return value of -1 from
one method might mean something different than a return value of -1 from
another method. Therefore, it is good practice to create your error codes as
#defines or constants and group them all in a single header file that is used in
every file in your application. That way, return values mean the same thing no
matter which method or function they come from.

As an alternative, you might wish to store your error and success codes
along with their descriptions in a database that can be accessed by reporting
programs. You can then generate meaningful reports from log files that contain
only numeric codes.

Another standard that can be employed is using an error class for the return
value of a function or method. This error class can take care of maintaining
return values and providing methods that create human-readable versions of
these values. An example of such a class will be discussed later in this chapter.

COMPLEXITY

EEE—

BEGINNING
10.2 How do |l...
Use the standard C library
functions perror and strerror
and the predefined C macros to
report runtime errors in my
programs?
Problem

| want to be able to handle errors that occur in the Standard C Library
functions | am calling in my program. Is there anything provided by the
Standard C Library that will help me do this?

CHAPTER 10

C-STYLE ERROR HANDLING

Technique

In order to handle errors that are returned from functions, you have to know
what those error values mean. This is easy if the return values are coming from
functions you have created. But what if you are using the Standard C Library
and wish to report errors returned from functions in this library in a manner
that is understandable to everyone?

You could look up the error code for each function you are calling and insert
if statements in your code to test for each error. Then, you could write a
descriptive message to the standard output or a log file based on the error code.

As you might imagine, this is quite cumbersome. You'll need one if
statement for each error code. To make things easier, you could just write the
error code to your log file or to the screen and then look up the error manually.

Again, this still requires a lot of work. Isn't there a better way? Fortunately,
there is. The Standard C Library maintains a global variable called errno to
report error codes. Also, it provides a function to print a descriptive error to the
screen—perror. The Standard C Library also provides the strerror function
to enable you to create human-readable error messages. Finally, a number of
macros are provided to help make error messages from Standard C Library
functions more readable. The following sections will show you how to use each
of these facilities and how they work.

Steps

Clear the global errno variable by setting it to o.

Call a Standard C Library function that might generate an error.

Test the return value of the function you called to see if it was successful
or failed.

Call perror if the Standard C Library function failed.

Pass a string to perror that you want to be displayed along with the
description of the return value.
perror("Could not open file");

I Call strerror to create an error message string that you can print out to
the screen or write to a file.

Pass the errno variable for which you want to create a description to

strerror.

printf("Could not open file: %s\n", strerror(errno));

10.2

USE PERROR AND STRERROR TO REPORT RUNTIME ERRORS

IEM Use any of the special built-in macros provided in ANSI C implementa-
tions to help you locate the error at runtime. See Table 10.2 for a list of
the provided macros and what they mean.

Table 10.2 Built-in ANSI C Macros

MACRO DESCRIPTION

__DATE__ The date the source file was compiled in the form Mmm dd yyyy.
For example, Oct 4 1998.

__FILE__ The name of the current source code file.

_LINE__ Decimal integer representing the current line number in the
source file.

__ STDC__ This macro can be used to determine whether the compiler is
ANSI C compliant.

_ TIME__ The time the source file was compiled in the form hh:mm:ss.

IEM The following is a sample code snippet that attempts to open a file that
does not exist.

#include <stdio.h>
#include <string.h>
#include <errno.h>

void main()

{

FILE* fptr;

errno = 0;
fptr = fopen("NoSuchFile", "r");

if (fptr == NULL)
{

perror(" (perror) - Could not open NoSuchFile");

printf("\n%s \n\t file: %s\n\t date: %s\n\t time:
O%s\n\t error: %s\n",
"(strerror) - Could not open NoSuchFile ",
_ FILE_ , _ DATE__, _ TIME__, strerror(errno));
}
else
{
fclose(fptr);
}

CHAPTER 10

C-STYLE ERROR HANDLING

The following is the output from this sample program:

(perror) - Could not open NoSuchFile: No such file or directory

(strerror) - Could not open NoSuchFile
file: printerr.c
date: Oct 4 1998
time: 13:31:24
error: No such file or directory

How It Works

The Standard C Library functions use the global variable errno to hold error
codes. These error codes are typically defined in the errno.h header file. All
error codes are positive integers and the Standard C Library routines should not
clear the errno variable. That is the reason for step 1, the clearing of errno.

For efficiency and performance purposes, the values of errno are usually
stored in an array of string pointers called sys_errlist. The maximum number
of elements in the sys_errlist array is indicated by the value of a global
variable named sys_nerr. The names of the sys_errlist array and sys_nerr
variable might be slightly different depending on the compiler you are using.

To obtain the description of the error value in errno, perror and strerror
retrieve the string at the position in the array indicated by errno. They are able
to do this because the sys_errlist array is indexed by the errno variable.

The preceding sample code attempts to open a file that does not exist. If the
returned file pointer is nul1, which it should be, the code proceeds to print the
error. The error is printed in two different ways. First, perror is used to print a
short message along with the error. Next, strerror along with some of the
predefined ANSI C macros are used to print a more descriptive message. The
perror function prints its description to stderr, which is usually defined to be
the console window.

Comments

As you can see, the way the Standard C Library handles errors is very efficient
and maintainable. Also, it ensures that the error values are consistent across all
functions in the library.

You could do something similar in your applications by creating your own
version of the errno.h file and sys_errlist array. The only downside to this
approach is that you have to recompile your application every time you add an
error code.

10.3

USE ASSERT TO CATCH ERRORS WHEN RUNNING IN DEBUG MODE

An alternative to keeping these error codes in a header file is to keep them in
a database. When your application starts, it can load an array with all the error
codes and descriptions in the database. Your startup time will be longer, but
your execution time will not change. | feel that the advantages of this approach
far outweigh the minimal increase in startup time.

COMPLEXITY

EEEE——

BEGINNING
10.3 How do I...

Use assert to catch errors in my
code when running in debug
mode”?

Problem
| want to be able to catch errors in my code before | ship my application. Is
anything provided with the Standard C Library that will help me catch errors
before my application is released?

Technique

Before releasing your application for general use, it is imperative that it goes
through rigorous testing. In order to catch errors when you are testing, it is
important that your code tests different conditions and reports anomalies to the
tester. Also, if an anomalous condition occurs, you will want to terminate your
program so you can investigate why the problem occurred. Executing your
application in this context is referred to as running your application in debug
mode.

However, when your product is released, you don’t want your application to
terminate if an anomalous condition occurs. In that situation, your application
might be able to write a log message to a file and continue executing.

The Standard C Library provides the assert function that can be used to
test the validity of an expression. This expression can be anything that can be
evaluated to true or false, such as whether a pointer is null. If the expression is
false, assert prints a diagnostic message and aborts the program. You can then
use this diagnostic message to investigate the cause of the error condition.

CHAPTER 10

C-STYLE ERROR HANDLING

Steps

Determine conditions in your code that you want to test, such as a
pointer not being null.

Include assert.h in your source code file.

#include <assert.h>

Use the assert function to test the condition.
FILE* fptr = NULL;

fptr = fopen("NoSuchFile", "r");
assert(fptr != NULL);

fclose(fptr);

If the condition evaluates to false, assert will print a diagnostic message
and abort the program.

Assertion failed: fptr != NULL, file assert.c, line 9

How It Works

The assert function takes as input an integer variable that evaluates to true
(not equal to 0) or false (0). If the value is false, assert prints a diagnostic
message and aborts the program by calling the abort function in ANSI C
implementations or exit in traditional C implementations. These functions are
discussed later in this chapter. The diagnostic message includes the name of the
file and the line number at which the error occurred.

When you are ready to release your program for general use, you can turn
off assertions by defining the macro NDEBUG either in your code or on the
command line when compiling. To include this in your code, just add the
following line to an include file that is included in all your source code files.

#define #NDEBUG 1

Including this macro on the command line when compiling will be different
for each compiler. Therefore, check the documentation for your compiler for
instructions about how to do this.

Comments

Using assert in your code can greatly aid in documentation for those who are
maintaining your program and is also very helpful when debugging. When you
have finished testing your program, you can then simply turn off assertions by
defining the NDEBUG macro. Assertions in your code have no runtime overhead
when they have been disabled by defining the NDEBUG macro.

TeA EEC—
USE RAISE AND SIGNAL TO INDICATE ERRORS IN MY PROGRAMS

COMPLEXITY

BEGINNING

10.4 How do I...
Use raise and signal to indicate
errors in my programs?

Problem

Is there any way to handle runtime errors in my program other than returning
error codes from functions?

Technique

In certain situations, returning an error code is just not possible, such as when
a user interrupts the program by pressing Ctrl+C. In these situations, an error is
triggered or raised by the computer’s error detection mechanism. This error is
raised by the system and often will cause your application to terminate.

When this error occurs, you might wish to try to recover or you might want
to perform some clean up and exit gracefully. Fortunately, the Standard C
Library provides the signal function that can be used to catch the errors raised
by the system. When the error is raised, the function you specify in a call to
signal will be executed.

But what if you want to do something similar to this in your code? Is it
possible for you to raise an error in your code? The Standard C Library provides
the raise function for just this reason.

Using raise and signal together, you can implement an alternative error
handling technique. The sections that follow will show you how to do this and
how it works.

Steps

Include stdio.h for the printf function and stdlib.h for the exit
function. (The exit function will be discussed later in this chapter.)

#include <stdio.h>
#include <stdlib.h>

5

Include signal.h in your code.

#include <signal.h>

KM Define the prototype for the previous SIGINT signal handler and your new
SIGINT signal handler. SIGINT is raised whenever the user presses Ctrl+C.

void (*PrevInterruptHandler) (int);
void InterruptHandler(int);

388

CHAPTER 10

C-STYLE ERROR HANDLING

If you are going to raise signals yourself, define any additional signal
handler functions. This sample will raise the SIGTERM signal. Define the
previous and new signal handlers for SIGTERM.

void (*PrevTerminateHandler) (int);
void TerminateHandler(int);

Inside the main function, set the signal handler functions for the SIGINT
and SIGTERM signals.

PrevInterruptHandler = signal(SIGINT, &InterruptHandler);
PrevTerminateHandler = signal(SIGTERM, &TerminateHandler);

Also inside main, test the values of PrevinterruptHandler and
PrevTerminateHandler. Print a diagnostic message if either is equal to
SIG_ERR.

if (PrevInterruptHandler == SIG_ERR)
printf("Could not set SIGINT signal handler\n");

if (PrevTerminateHandler == SIG_ERR)

printf("Could not set SIGTERM signal handler\n");
Enter some code in main that will prompt the user for input.
printf("Enter a string. Enter Ctrl+C to quit: ");

scanf("%s", str);

Implement the InterruptHandler function. This function will print a
diagnostic message when the user presses Ctrl+C. It will then reset the
previous interrupt handler and raise the SIGTERM signal.

void InterruptHandler(int sig)

{
printf("\n\nHandled SIGINT signal (%d).\n", sig);
if (signal(SIGINT, PrevInterruptHandler) == SIG_ERR)
printf ("Could not reset previous SIGINT signal handler\n");
raise (SIGTERM);
}

Implement the TerminateHandler function. This function will print a
diagnostic message and exit the program using the exit function that is
discussed later in this chapter.

void TerminateHandler(int sig)

{
printf("Handled SIGTERM signal (%d). Exiting program.\n", sig);

if (signal(SIGTERM, PrevTerminateHandler) == SIG_ERR)
printf ("Could not reset previous SIGTERM signal handler\n");

exit(0);

10.4

USE RAISE AND SIGNAL TO INDICATE ERRORS IN MY PROGRAMS

The following is the output for this sample program:
Enter a string. Enter Ctrl+C to quit:

Handled SIGINT signal.
Handled SIGTERM signal. Exiting program.

How It Works

Each implementation of the Standard C Library defines a set of signals in the
signal.h header file. The name of each signal begins with the letters S1G.
Signals are raised in response to user actions, the computer’s error-detection
facility, or manually by calling the raise function. See Table 10.3 for a list of
some standard signals.

Table 10.3 Standard Signals

389 pumy

SIGNAL DESCRIPTION

SIGABRT Terminates the program. This signal indicates abnormal program
termination as might be caused by a call to abort.

SIGFPE Floating-point error such as one caused by dividing by zero.

SIGINT lllegal computer instruction.

SIGEGV Invalid memory access.

SIGTERM Termination signal sent to the program from a user or another

application.

The sample code in the “Steps” section sets a signal handler function for the
SIGINT signal that is raised when the user presses Ctrl+C. Also, the code is
going to raise a signal so it has to set the handler function for that signal. The
SIGTERM signal will be raised when the handler for SIGINT is called.

The signal handlers that you set must be defined to take an integer input
parameter and return void. In some implementations, handler functions for
floating-point exceptions (SIGFPE) take an optional second parameter that
indicates the type of floating-point exception that has occurred.

After setting the handlers for each signal, the code checks the value of the
return code for the signal function. The signal function will return a pointer
to the previous handler function that should be reset at some later point in the
program. If the value of the previous handler function is SIG_ERR, which is -1
in most implementations, the signal function failed to set the new signal
handling functions. No signal handling functions have previously been set, so
the values returned from signal should be null.

CHAPTER 10

C-STYLE ERROR HANDLING

If you want a specific signal to be ignored, you can pass the special value
SIG_IGN to the signal function. In addition, if you want a signal to revert back
to its default action, you can pass the special value S1G_DFL to the signal
function.

When the user presses Ctrl+C, the interrupt signal SIGINT is fired by the
system. Because you have set a handler function for this signal, the
InterruptHandler function is called when this occurs. This function prints a
diagnostic message and then calls the raise function to raise the SIGTERM
signal. When this signal is raised, the TerminateHandler function is called.
This function prints a diagnostic message and exits the program.

Each of the signal handlers resets the previous signal handler. This might not
always be necessary, especially in this case, because you will be immediately
exiting the program. In fact, the value of the previous signal handlers should be
a null pointer because you have not previously set any signal handlers for these
signals. This code is provided to show you how to reset previous signal
handlers if you want to temporarily set a signal handler.

If a handler function returns, execution continues at the point of
interruption. However, if the signal was raised by a call to the abort function,
ANSI C-compliant programs are terminated. If the handled signal was SIGFPE,
the behavior upon return from the handler is undefined.

If you don't set a handler function for a signal or specify one of the special
values, the signal has a default action. Table 10.4 lists the default action for
each of the standard signals listed in Table 10.3.

Table 10.4 Default Action for the Standard Signals

SIGNAL ACTION

SIGABRT Terminates the program.

SIGFPE Terminates the program.

SIGINT Terminates the program.

SIGEGV Terminates the program.

SIGTERM Ignored.
Comments

By using raise and signal, you can implement an alternative error handling
technique into your programs. Instead of returning errors from functions, you
can set handler functions that are called when a signal is raised. This also allows
you to perform such actions as freeing memory when your program is
abnormally terminated.

105 o1 B
USE ABORT TO TERMINATE MY APP IF A SERIOUS ERROR OCCURS

When compiling the preceding sample code, you might experience warnings
if you are using a compiler that is not ANSI C—compliant or does not support
the latest features of the C++ language.

COMPLEXITY
BEGINNING

10.5 How doll...
Use abort to terminate my
application if a serious error
occurs?

Problem

I have run into a serious error condition from which | cannot recover in my
program. How can | terminate my application? Is there any way to execute a
body of code when my program is terminated?

Technique
In the unfortunate situation in which a serious error occurs and you can't
recover from it, it might be necessary to terminate your application.
The Standard C Library provides the abort function that enables you to
terminate your application abnormally.

When this abnormal termination occurs, you might wish to perform some
action, such as freeing memory. Using the signal function described earlier,
you can specify a function that is called when the program is abnormally
terminated.

The following sections will discuss how to use abort to terminate your
application and how to use signal to execute a function when abort is called.

Steps

Include stdio.h for the printf function and stdlib.h for abort, free,
and malloc

#include <stdio.h>
#include <stdlib.h>

Include signal.h in your code.

#include <signal.h>

CHAPTER 10

C-STYLE ERROR HANDLING

Define the prototype for the previous SIGABRT signal handler and your
new SIGABRT signal handler.

void (*PrevAbortHandler) (int);
void AbortHandler(int);

>

Define a global variable to hold some memory.

char* str;

oM Inside the main function, enter code to handle the SIGABRT signal,
allocate some memory, and then call abort.

void main()

{
PrevAbortHandler = signal(SIGABRT, &AbortHandler);

if (PrevAbortHandler == SIG_ERR)
printf ("Could not set SIGABRT signal handler\n");
else

{
str = (char*)malloc(10);
abort();

}

I Implement the handler function for the S1GABRT signal. This function will
print a diagnostic message, reset the previous SIGABRT handler function,
and free the memory that was allocated in main.

void AbortHandler(int sig)

{
printf("\nHandled SIGABRT signal (%d). Cleaning
Oup allocated memory\n", sig);
free(str);

}

The following is the output from this sample program:

Handled SIGABRT signal. Cleaning up allocated memory

How It Works

When called, abort prints the message abnormal program termination, and
then raises the SIGABRT signal. If you have set a signal handler for SIGABRT,
your handler function will be called.

The code listed in the “Steps” section sets a handler function for the SIGABRT
signal. Then it allocates some memory and calls abort. The handler function,
AbortHandler, is then called. This function prints a diagnostic message and
then frees the memory that was allocated in main. When AbortHandler returns,
the program is terminated.

10.6

USE EXIT & ATEXIT TO PERFORM ACTION AT PROGRAM TERMINATION

Comments

Using abort in your programs is an easy way to terminate your application if a
condition occurs from which you cannot recover. Setting a handler function for
SIGABRT allows you to perform some action when your program is aborted,
such as cleaning up previously allocated memory. This means any time your
program is aborted, whether or not you are the one calling abort, you can be
assured that all allocated resources have been freed.

COMPLEXITY

393 pumy

10.6

BEGINNING
How do I...

Use exit and atexit together to
perform some action when my
program terminates normally?

Problem

I would like to exit my application and return a code from my application.
Also, | would like a function to be executed automatically when my application
terminates. How can | do this?

Technique

In order to exit your application, you can use the abort function as mentioned
earlier. However, abort is usually used for abnormal program termination.

Therefore, the Standard C Library provides the exit function that can be
used to exit your program. This function can also be used to return error or
success codes from your application. In addition, the atexit function is
provided to enable you to specify a function that will be called any time the
exit function is called.

The following sections describe how to use exit and atexit and how they
work.

Steps

Include stdio.h for the printf function and stdlib.h for atexit and
exit.

#include <stdio.h>
#include <stdlib.h>

CHAPTER 10

C-STYLE ERROR HANDLING

Define the prototype for a function that will be called when exiting the
program normally.

void FinalCleanup(void);

3

Define a global variable that will be used to hold some memory.

char* str;

M Inside main, enter code to set the function called when the program exits,
allocate some memory, and call exit.

void main()

{

int retvVal = atexit(FinalCleanup);

if (retval != 0)
printf ("Could not set exit function\n");
else

{
str = (char*)malloc(10);
exit(1);
}
}

Implement the FinalCleanup function. This function will print a
diagnostic message and free the memory previously allocated in main.

void FinalCleanup(void)

{

printf("\nCleaning up allocated memory.\n");

free(str);

}
I The following is the output for this sample program:

Cleaning up allocated memory.

How It Works

The exit function causes the program to be terminated normally. Unlike abort,
exit does not print a diagnostic message. You can return an exit status code to

the operating system or the caller of your program by specifying that exit status
when you call the exit function.

You can register a function that will be called when exit is called or main
returns by using the atexit function. The function you register with atexit
must take no input parameters and return void. Anytime the program exits
normally, your registered function will be called. You can register multiple

10.7

DETECT ERRORS THAT OCCUR WHEN READING FROM/WRITING TO A FILE

functions with atexit and you can register the same function more than once.
If you have called atexit multiple times, the registered functions are called in

reverse order of their registration. In other words, the functions are executed in
last-in first-out (LIFO) order.

The exit function will perform clean up before exiting. On ANSI
C—compliant compiler implementations, all functions registered with atexit
are called in reverse order of their registration. Then, all output streams are
flushed and all open streams are closed. Next, files that were previously created
using the tmpfile Standard C Library routine are removed. Finally, control is
returned to the operating system or caller of this program with the return value
specified in the call to exit.

The sample code listed in the “Steps” section registers the FinalCleanup
function with atexit. When the program exits normally, FinalCleanup is
called. It then prints a diagnostic message and frees memory that was
previously allocated in main.

Comments

Using the exit function, you can return status or error codes to the operating
system or to other programs. Using the atexit function, you can be sure all
resources are freed when exiting your program normally. As you can see, if you
use the techniques presented in this How-To and How-To 10.5 together, you
can almost always be sure resources are freed whether your program exits
normally or abnormally.

COMPLEXITY

10.7

INTERMEDIATE
How do I...

Detect errors that occur when
reading from or writing to a file
using the file functions provided
with the Standard C Library?

Problem

When working with files, is there any way to detect errors that occur when
reading from or writing to a file?

EEEE——

CHAPTER 10

C-STYLE ERROR HANDLING

Technique

The functions for dealing with a file provided by the Standard C Library
typically deal with the file as a stream. The ferror function can be used to test
the stream for a read or write error.

The following section discusses how to test a file stream for a read or write
error and how it works.

Steps

Include stdio.h for standard 1/O operations and errno.h in order to
have access to the errno variable.

#include <stdio.h>
#include <errno.h>

The code in the remaining steps should be placed in main.

Declare variables to hold the file pointer of an open file, the data read
from a file stream, the number of bytes read, and an err value that will be
returned from ferror.

FILE *fptr;
char buf[81];
int errval;

Clear the errno variable and open a file for write-only access.

errno = 0;
fptr = fopen("NewFile", "w");

If the open failed, print an error message. Otherwise, attempt to read
from the file that is open for write-only access. Test for an error condition
using ferror and print a message if the read operation failed. Finally,
clear the error condition and close the file.

if (fptr == NULL)
perror("Could not open NewFile");
else
{
errno = 0;
fread(buf, sizeof(char), sizeof(buf), fptr);

errVal = ferror(fptr);

if (errval)

{
printf ("Error %d reading stream\n", errVal);
clearerr(fptr);

}

fclose(fptr);
}

10,5 -
USE SETJMP & LONGJMP TO MAINTAIN STATE WHEN HANDLING ERRORS

I The following is the output for this sample program:

Error 32 reading stream

How It Works

The ferror function tests for an error condition that might have occurred when
reading from or writing to a stream. It will return the error status to the caller.
If the error status is not equal to @, an error has occurred. The ferror function
will continue to return errors unless the clearerr function is called. Closing
the stream with fclose will also clear the error condition.

The sample code in the “Steps” section opens a file for write-only access and
attempts to read from it. This will cause an error to occur. The ferror function
is called to test for an error. A diagnostic message is printed if there is an error.
Next, clearerr is called to clear the error condition.

Comments

The ferror function is very useful when testing the status of a read or write
operation to a file stream. However, if you are going to make repeated calls to
ferror, remember to call clearerr each time.

COMPLEXITY
INTERMEDIATE

10.8 How do I...
Use setjmp and longjmp to
maintain state when handling
errors?

Problem

Is there another way to handle errors in my code instead of returning error
values from functions or using raise and signal?

Technique

Another way to handle error conditions in your code is to perform what are
known as non-local jumps. This means if an error occurs in a function, you can
jump to a particular line of code. Typically, that line of code is just prior to
where the function was originally called.

CHAPTER 10

C-STYLE ERROR HANDLING

Using the setjmp and longjmp functions provided with the Standard C
Library, you can perform non-local jumps to handle error conditions and still
maintain the state of the caller’s stack environment. This means when control is
set back to the calling function, its local variables still have the same values.

This How-To will discuss how to use setjmp and longjmp together to
perform error handling. This How-To will also discuss how they work and why
it is not safe to use these functions in C++ programs.

Steps

3

4

Include stdio.h for standard 1/O operations.

#include <stdio.h>

Include setjmp.h for the setjmp and longjmp functions and the jmp_buf
typedef.

#include <setjmp.h>

Define the prototype for a function that you will call from main.

void DoSomeWork(void);

Define a global jump buffer environment variable using the jmp_buf
typedef.

jmp_buf Env;

Inside main, call setjmp to record the stack environment. Then call the
function defined in step 3.

void main()

{
int retvVal = setjmp(Env);

if (retval != 0)
printf("Call to setjmp returned: %d\n", retval);
else
DoSomeWork() ;
}

Implement the DoSomewWork function. This function attempts to open a file
that does not exist. If the open fails, it calls Longjmp to cause the program
to return from the call to setjmp again.

void DoSomeWork(void)

{
FILE* fptr = fopen("NoSuchFile", "r");

10,5 300 B
USE SETJMP & LONGJMP TO MAINTAIN STATE WHEN HANDLING ERRORS

if (fptr == NULL)

{
printf("Calling longjmp\n");
longjmp(Env, -1);
}
}
How It Works

The setjmp function records the current state of the stack environment. The
jmp_buf typedef is an implementation-defined array. After recording the current
stack environment, setjmp returns o.

A call to 1ongjmp will restore the stack environment that was saved when
setjmp was called. When calling 1ongjmp, you specify the variable used to save
the stack environment and a return code. Calling Longjmp causes the program
to return from setjmp, again returning the return code that was given to
longjmp as the second parameter. When setjmp returns, all variables, except
register variables, that are accessible by the function calling setjmp have the
same values they had when the 1ongjmp function was called.

The sample code in the preceding “Steps” section first calls setjmp to save
the current state. The return value from this first call to setjmp is @, so you call
the DosomeWork function. This function attempts to open a file that does not
exist. If the open fails, DoSomework calls 1ongjmp and passes to it the stack
environment previously saved and a return code of -1. This causes setjmp to
be returned from again. This time the return value from setjmp is -1.
Therefore, the program exits.

Comments

Using setjmp and longjmp, you can implement another form of error handling
in your programs. However, you should not use setjmp and longjmp in C++
programs. These functions do not support the semantics of C++ objects. That
means destructors for objects will not be called when 1ongjmp is called. In C++
programs, you should use the C++ exception-handling constructs that are
talked about in Chapter 11, “Exception Handling in C++.”

CHAPTER 10

C-STYLE ERROR HANDLING

COMPLEXITY
INTERMEDIATE

10.9 How do l...
Use a C++ class to handle runtime

errors in a more maintainable
fashion?

Problem
I understand the importance of error handling in my programs. | also
understand how to return values from functions. Is there a better way to keep
track of error information in my programs?

Technique
Returning error values from functions is a very efficient way to handle errors.
However, the meanings of the return values of many different functions can be
very difficult to keep track of. They are also very difficult to maintain, especially
if you are not the original developer of the code and the comments are poorly
written or nonexistent.

This section provides a sample class called Errorclass that can be used as
the return value for a function. This class takes care of maintaining error codes
and provides human-readable descriptions. You can then modify this class to
suit your own needs.

Steps
This section discusses how to use this sample class in your programs. The
actual class itself will be discussed in the “How It Works” section.

Create a file that contains descriptions of all the errors you will encounter
in your program. Here is an example of an error file called errors. txt.

Error opening file

Error reading file
Floating-point exception
Unable to open database
Database query failed
Drive is full

Web page not found

Create a header file that contains macros for your error codes. Here is an
example of a header file that holds all the error codes for a program. You
should name this file errors.h.

10.9

USE A C++ CLASS TO HANDLE ERRORS MORE MAINTAINABLY

#define OPNERR @ // Error opening file
#define READERR 1 // Error reading file
#define FPERR 2 // Floating-point exception
#define DBOPNERR 3 // Unable to open database
#define DBQERR 4 // Database query failed

5

#define DRVFULLERR // Drive is full

3

Create a global instance of the Errorclass class.

ErrorClass ec;

M \When your program starts, load the description of your errors from an
error file. If loading the errors fails, you might want to exit the program.

if (ec.loadErrors(ERROR_FILE) == false)
{

cout << "Error loading error file" << endl;
exit(-1);
}

When an errors in a function, set the current error code.

ec.currentError(OPNERR) ;

You can provide a human-readable description of the error by calling one
of the two overloaded description functions. The first one provides a
description of the current error state. The second one provides a
description of the specified error code. You can pass one of these func-
tions to printf or cout to display descriptive error information.

cout << "Error in function: " << ec.description() << endl;

If you are passing the error object around in your program, you can check
the current error state by using the iserror function.

if (ec.isError())
cout << "Error in function: " << ec.description() << endl;

How It Works

The Errorclass class maintains an array of error descriptions that are read
from an error file. These error messages are sequential starting at O and going as
high as 100 for this small example. The class definition of the Errorclass class
is provided in Listing 10.1 and the implementation file (.cpp) is given in
Listing 10.2. This sample code is also provided on the CD that comes with this
book. The important methods of this class will be discussed in turn.

m CHAPTER 10
C-STYLE ERROR HANDLING

Listing 10.1 ErrorClass Class Definition File

/1
// ErrorClass.h - definition of ErrorClass class
/1

#include <iostream.h>

#define ERRDESC_SIZE 81
#define MAX_ERRNUM 100

class ErrorClass
{
public:
ErrorClass();
virtual ~ErrorClass();

// Utility methods
const char* description() const;
const char* description(int errorNumber) const;

void currentError(int errorNumber);
int currentError(void) const;

bool isError() const;
bool loadErrors(const char* errorFile);

protected:

int _currentError;

bool _openError;

char _errors[MAX_ERRNUM][ERRDESC_SIZE];
b

Listing 10.2 ErrorClass Class Implementation

/1
// ErrorClass.cpp - implementation of ErrorClass class
/1

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "ErrorClass.h"

ErrorClass: :ErrorClass()
1 _currentError(-1),

_openError(false)
{
}
ErrorClass::~ErrorClass()
{
}

const char* ErrorClass::description() const

{

10.9

USE A C++ CLASS TO HANDLE ERRORS MORE MAINTAINABLY

return description(_currentError);

const char* ErrorClass::description(int errorNumber) const

if (_openError)
return "Error loading errors list";

if (_errors[@][0] == '\@' |, errorNumber >= MAX_ERRNUM)
return "";

return _errors[errorNumber];

}

void ErrorClass::currentError(int errorNumber)

{

_currentError = errorNumber;

}
int ErrorClass::currentError() const
{

return _currentError;
}
bool ErrorClass::isError() const
{

if (_openError)

return true;

return (_currentError >= 0);

}

bool ErrorClass::loadErrors(const char* errorFile)

{
FILE* fptr = fopen(errorFile, "r");

if (fptr == NULL)

{
_openError = true;
return false;

}

else

{

_openError = false;

for (int j = 0; !feof(fptr); j++)

{
char buf[ERRDESC_SIZE];
// Read the error descriptions from the
// error file. The error descriptions must
// be in sequential order.
/1
if (fgets(buf, ERRDESC_SIZE, fptr) != NULL)
strcpy(_errors[j], buf);
}

continued on next page

403 py

—

CHAPTER 10

C-STYLE ERROR HANDLING

continued from previous page
fclose(fptr);

}

return true;

The first important method of this class you will use after constructing an
ErrorClass object is the 1loadErrors method. This method first opens the
specified error file. Then it reads each line of the file and populates the _errors
array. The _errors data member is just an array that can hold up to 100
strings. You might want to implement _errors another way, such as an STL
map class that maps error codes to their descriptions. Also, you might want to
store your error codes and descriptions in a database.

After the errors are loaded into the array, you can set the current error state
by using the overloaded currentError method that takes an integer as its input
parameter. You can retrieve the current error state at a later time by calling the
other currentError method.

You can check to see whether an error has occurred at any time by calling
the iseError method. This method returns true if there was an error opening
the error file, as represented by the openError data member, or if the
_currentError data member is greater than or equal to o. It will return false
otherwise.

Next, to obtain a human-readable description of an error, you can use the
two overloaded description methods. The one that takes no input parameters
simply passes the _currentError data member to the description method
that takes an integer parameter. This description method returns the string
that is stored in the _errors array at the position indicated by the error
number.

Listing 10.3 lists the driver program that is included to demonstrate how to
use the Errorclass class.

Listing 10.3 Driver Program for the ErrorClass Class

/1

// driver.cpp - Driver for ErrorClass class.

Il

#include
#include
#include
#include

<iostream.h>
<stdlib.h>
"ErrorClass.h"
"errors.h"

#define ERROR_FILE "errors.txt"

const ErrorClass& DoSomething();

// Global error object
ErrorClass ec;

10.9

405 puy

USE A C++ CLASS TO HANDLE ERRORS MORE MAINTAINABLY

void main()

{

}

if (ec.loadErrors(ERROR_FILE) == false)
cout << "Error loading error file" << endl;
exit(-1);

ErrorClass ec = DoSomething();

if (ec.isError())
cout << "Error in DoSomething: " << ec.description() << endl;

const ErrorClass& DoSomething()

{

ec.currentError (OPNERR) ;
return ec;

In order to use ErrorcClass, a little preparation has to be done. First, you
must create a file that contains all the error descriptions in sequential order.
Next, you might want to create a header file that contains macros for each of
these errors. This will make your code easier to read and maintain.

Next, you have to construct an Errorclass object. This object can be global
to your program or local to a function that is setting an error.

Then you must load the error descriptions from the error file by calling the
loadError method. If the errors are loaded successfully, you can then set the
current error using the currentError method and obtain the description of the
error using the description method.

The driver code in Listing 10.3 calls a function to perform some action. This
function sets the current error to OPNERR and returns a reference to the global
ErrorClass oObject. If you create an Errorclass object locally in a function,
you must pass a copy of the object back to the caller. If you pass back a
reference to the local object, your program will crash when the caller tries to
use it. This is because the local object was destroyed when control was returned
to the caller (that is, when it went out of scope).

Comments

Using a class such as ErrorClass gives you an easy way to provide descriptive
information about errors that occur in your program. You can print these
descriptions to the standard output or to a log file for later research. |
encourage you to change this class to fit the needs of your program.

— CHAPTER 11
EXCEPTION HANDLING

EXCEPTION
HANDLING IN C++

How do I...

11.1 Utilize the exception handling mechanism to
process potential error conditions?

11.2 Use the various catch constructs such as multiple
catch clauses, catch ordering, and the rethrowing
of exceptions?

11.3 Implement and use an exception class?
11.4 Specify exceptions that a function will throw?

11.5 Handle exceptions that are not caught or not
expected?

How-To 1.7 demonstrated the use of the exception handling mechanism offered
by the C++ Standard. That How-To is a basic introduction into the use of
exception handling. This chapter will explore the world of exception handling
in more detail.

The exception handling mechanism furnished by the Standard provides a
common and standard interface for handling program anomalies. Without
exception handling, error handling is performed using return values from

CHAPTER 11

111

11.2

11.3

11.4

EXCEPTION HANDLING IN C++

functions and global status variables. Every developer has her own style of
handling errors, leading to inconsistency among applications and library
packages. In this chapter, you will see various ways to apply the exception
handling mechanisms.

One word of caution about this chapter: If you are using a compiler that
does not support exception handling, the examples will not compile and
execute as expected. If you have been putting off upgrading your compiler, now
is the time to do it.

Utilize the Exception Handling Mechanism to
Process Potential Error Conditions

Error handling is an important feature for the success of an application. Invalid
input, access to hardware that is not available, and other program anomalies
must be tested for and handled gracefully. This How-To gives a review of the
C++ exception handling mechanism. The exception handling mechanism
provided by the C++ Standard is a standardized process for handling exceptions
at runtime.

Use the Various catch Constructs Such As Multiple
catch Clauses, catch Ordering, and the Rethrowing
of Exceptions

The C++ exception handling mechanism is a very robust and standardized way
to handle program anomalies. Multiple catch clauses provide a means to
handle more than one exception type thrown from a try block. The ordering
and rethrowing of catch clauses can be important. In this How-To, you will see
how to set up multiple handlers and how to rethrow exceptions.

Implement and Use an Exception Class

The throwing of exception types can include native types such as int and
char* and user-defined types. User-defined exception types provide a more
robust mechanism for the capturing and reporting of exceptions. In this
How-To, you will see how to declare, define, throw, and catch exception class
objects.

Specify Exceptions That a Function Will Throw

Exception handling is an important feature of the C++ language. The exception
handling mechanism provides a robust method for handling errors at runtime.
Yet, for the developer, knowing all the exceptions a function will throw can
sometimes be guesswork. Exception specifications provide a mechanism to
reveal the exceptions a function will or will not throw.

11.1

UTILIZE EXCEPTION HANDLING TO PROCESS ERROR CONDITIONS

11.5 Handle Exceptions That Are Not Caught or Not

Expected

Although the exception handling mechanism is very robust and allows you to
handle exceptions of any type, the unexpected exception is indeed difficult to
handle. In this How-To, you will see how to incorporate code to manage
unexpected exceptions.

COMPLEXITY

R

BEGINNING
11.1 Howdoll...

Utilize the exception handling
mechanism to process potential
error conditions?

Problem
I need to incorporate exception handling into my programs. | have read that the
C++ language Standard provides a standard facility to handle exceptional
conditions at runtime. How can | get a good overview of exception handling in
C++?

Technique
This How-To begins by providing a straightforward example that demonstrates
various uses of the exception handling mechanism. This How-To will only
scratch the surface of exception handling; the How-Tos that follow will address
specific issues and advanced features of the C++ exception handling
mechanism.

Steps

Create a new directory named EXCEPTH under your base source directory
and make EXCEPTH the current directory.

Start up your source code editor and type in the following source code,
exactly as shown.

/] filename: excepth.cpp - program to demonstrate
// basic exception handling in C++

#include <iostream>

using namespace std ;

CHAPTER 11

EXCEPTION HANDLING IN C++

const int DB_OK = 0 ;
const int DB_NOT_INIT = -1 ;
const int DB_ACCESS_ERROR = -2 ;

int dbInit() ;

int dbOpen(const char *fname) ;

int dbGetData(int field, char *data) ;
int dbClose(int handle) ;

void dbInitEH() ;

int dbOpenEH(const char *fname) ;

void dbGetDataEH(int field, char *data) ;
void dbCloseEH(int handle) ;

int main()

{
// manipulating a database,
// traditional error handling.
if(dbInit() == DB_OK)

{
int theHandle = dbOpen("test.dat")
if(theHandle > 0)
{
char data[30] ;
if(dbGetData(1, data) == DB_OK)
cout << "Data is: " << data << endl ;
else
cout << "Error getting data" << endl ;
if(dbClose(theHandle) != DB_OK)
cout << "Error closing dB" << endl ;
}
else
cout << "Error opening DB" << endl ;
}
else

cout << "Error initializing DB" << endl ;

// manipulating a database,
/1 the exception handling way

try {
char data[30] = ""

dbInitEH() ;
int theHandle = dbOpenEH("test.dat") ;

dbGetDataEH(1, data) ;
cout << "Data is: " << data << endl ;
dbCloseEH(theHandle) ;
}
catch(int v) {
cout << "Error with DB: " << v << endl ;

}

11.1

L 413 p

UTILIZE EXCEPTION HANDLING TO PROCESS ERROR CONDITIONS

3

return(0) ;
}
int dbInit()
{
return(DB_OK) ;
}
int dbOpen(const char *fname)
{
return(2) ;
}
int dbGetData(int field, char *data)
{
inti=20;
for(; i <10; i++)
data[1] =1 + 48 ;
datal i] = 0x00 ;
return(DB_OK) ;
}
int dbClose(int handle)
{
return(DB_OK) ;
}
void dbInitEH()
{
}
int dbOpenEH(const char *fname)
{
return(2) ;
}
void dbGetDataEH(int field, char *data)
{
int ret = DB_ACCESS_ERROR ;
throw(ret) ;
}
void dbCloseEH(int handle)
{
}

Save the file, naming it EXCEPTH.CPP. Then exit the editor and return to
the command line.

At the command line, type the command required to compile and link
the program. For example, if you are using Microsoft Visual C++, you
type c1 first.cpp. If you are using DIGPP, type gcc excepth.cpp. The

CHAPTER 11

EXCEPTION HANDLING IN C++

compiler and linker will run and (if you typed all source text correctly)
return to the command line without any error messages.

At the command prompt, run the final executable (called excepth). If you
are on a UNIX system and you do not see a file named excepth, look for
a file named a.out; if you find this filename, execute it. You should see
the following output on your screen:

Data is: 0123456789
Error with DB: -2

The next section, “How It Works,” will discuss how this program
operates.

How It Works

After the two source comment lines, you see the include directive for iostream.
On the next line is the using directive, effectively making all names visible in
namespace std into the current scope.

The next three lines of code declare and define three constant values.

const int DB_OK = 0 ;
const int DB_NOT_INIT = -1 ;
const int DB_ACCESS_ERROR = -2 ;

These values are used as status codes for the “dummy” database functions.
These values are representative of some well-known Indexed Sequential Access
Methods (ISAM) C libraries. Not that the values themselves match the libraries’
codes, but rather the logic of using negative integer values to represent error
codes.

The next four lines

int dbInit() ;

int dbOpen(const char *fname) ;

int dbGetData(int field, char *data) ;
int dbClose(int handle) ;

are function declarations representing traditional C-style ISAM functions. This
program does not actually access any data files, but simulates the logic of doing
so. The functions are described in more detail later in this section.

The next four source lines

void dbInitEH() ;

int dbOpenEH(const char *fname) ;

void dbGetDataEH(int field, char *data) ;
void dbCloseEH(int handle) ;

declare four functions oriented around exception handling. The function names
match the previous function names with the string EH appended to the names.

11.1

UTILIZE EXCEPTION HANDLING TO PROCESS ERROR CONDITIONS

The EH designates that these functions utilize exception handling. Also, notice
that all but one of these functions return void, whereas the previous four
functions return an int.

Now, let’s take a step back and examine the following section of code. Notice
all the if-else statements; this code is almost hard to follow. You really have to
pay attention to what is happening here.

if(dbInit() == DB_OK)

{

}

else

int theHandle = dbOpen("test.dat") ;

if(theHandle > DB_OK)

{
char data[30] ;

if(dbGetData(1, data) == DB_OK)

cout << "Data is: " << data << endl ;
else

cout << "Error getting data" << endl ;

if(dbClose(theHandle) != DB_OK)
cout << "Error closing DB" << endl ;

}

else
cout << "Error opening DB" << endl ;

cout << "Error initializing DB" << endl ;

The first line in this section of code calls the dbInit () function to initialize
the database. The return value from that function specifies whether the
initialization is successful. Otherwise, the associated else reports an error.

The next line declares an integer to hold the handle associated with the file
to be opened. Notice that the dbopen () function returns a non-zero, positive
value to indicate success. The logic of this function call and the logic of the
previous one are not consistent with each other.

The if statement that follows checks that the return from dbopen () is
greater than zero; otherwise, the associated else displays an error message.

The first line in this if block declares an array of char named data. This
variable is used by the function call within the if statement that follows:

if(dbGetData(1, data) == DB_OK)

This example prints out the value of the variable as a result of the function
call. A real database application might perform some operations on the data,
expanding the if code block. Notice that the associated else displays an error
to the user if the function call is unsuccessful.

The next if block makes a function call to close the data file. If the close is
unsuccessful, an error message is displayed to the user.

L 415 p

CHAPTER 11

EXCEPTION HANDLING IN C++

Take one more look at the previous block of code. All it does is simply
initialize, open, retrieve from, and close a data file. A lot of “extra” code is lying
around taking up space, wouldn't you say? Notice that the code always has to
take one route if the function call is successful and another route if the function
call fails for any reason. This tends to clutter the source code with a
never-ending string of if-else statements. Another option is to use a global
status variable, but this does not cut down on the if-else dilemma. As a
matter of fact, this method tends to make the code look worse because you
have to make the function call and then check the status variable.

Okay, lets move on to the next section of code:

try {

}

char datal[30] = "" ;

dbInitEH() ;
int theHandle = dbOpenEH("test.dat") ;

dbGetDataEH(1, data) ;
cout << "Data is: " << data << endl ;
dbCloseEH(theHandle) ;

catch(int v) {

}

cout << "Error with DB: " << v << endl ;

Now there’s a clean-looking block of code. Notice that the dbInitEH(),
dbOpenEH (), dbGetDataEH (), and dbCloseEH() function calls are encased
within a try block. No checks are made for success or failure for each function
call—no need to clutter the code with if-else blocks. The previous block of
code constitutes 14 lines of code; this section of code occupies 9 lines of code.
Any errors caught in any of the function calls are caught by the associated
catch clause.

This is the real intent of exception handling: to separate the recognition and
handling of a program anomaly. Let’s take a second look at the previous section
of code and discuss the try block and catch clause.

A try block is introduced with the try keyword followed by the block of
code to be executed. The try block can be a single statement or a series of
statements encased within a left and right brace. It is recommended that you
always use the left and right brace as a visual aid and for future maintenance
efforts.

All statements within a try block are executed unless one of the statements
throws an exception. If any exception is thrown, control is transferred to the
catch clause. If a catch clause cannot be found to handle the exception within
the current scope, the exception handling mechanism searches up the call
chain, attempting to locate a catch clause that can handle the exception. If

11.1

UTILIZE EXCEPTION HANDLING TO PROCESS ERROR CONDITIONS

control must leave the current scope, say to a function block, the stack is
unwound and any objects created are properly destroyed. Control is then
returned to the calling block so the exception can be handled. Note that any
objects created on the free store will not be destroyed.

If no exception handler is found and control has reached the main function,
the terminate () function, found within the standard library, is invoked. The
default action of the terminate () function is, of course, to terminate the
program.

A try block is the same as any other C++ block. You can declare variables,
call other functions, execute loop statements, and so on and so forth.
Remember that any variables declared will not be accessible outside the try
block. Although not an absolute requirement, you should follow a try block
with one or more catch clauses that can handle any exceptions that might be
thrown.

Let’s take a closer look at the catch clause:

catch(int v)

catch(...

A catch clause consists of the keyword catch, followed by an argument of
some type. The previous catch clause will handle an exception of type int that
is thrown within the preceding try block. The argument to a catch clause can
be a native type such as int or char*, or it can be a user-defined type.

You can specify one or more catch clauses following a try block. There is a
special-case catch clause, known as the catch-all clause. It looks like this:

)

The catch-all catch clause must be the last catch clause among multiple
catch clauses. This catch clause will catch any exception thrown. | have seen
application code in which every try block is followed by a catch-all catch
clause. In my opinion, this style of exception handling should not be
implemented. The exceptions to be caught should be explicitly stated. The
catch-all catch clause should be used only in situations in which you do not
specifically know the type of exceptions that might be thrown.

Let’s examine the function definitions that follow the main function. The
majority of these function definitions are rather trivial, so | will move through
the descriptions quickly.

The first function, dbInit (), pretends to initialize a database and simply
returns a success value. Next is the function dbopen () that fakes database open
functionality; it simply returns a positive, non-zero handle to the calling
function. Moving the source file, you come upon the next function,
dbGetData(). This function provides some functionality, even if minimal; it
simply assigns each ASCII digit, 0-9, to the character array passed in

L 417

m CHAPTER 11
EXCEPTION HANDLING IN C++

(actually a pointer). Finally, the function returns a success value to the calling
function. You arrive at the function dbClose (), which simulates the closing of a
database file; it merely returns a success value.

The previous set of function definitions represents the traditional style of a
function returning a result value. Although these functions return only a simple
value to designate success or failure, the code required at the call site can
become tedious and excessive. You can witness this with just the minimal code
in this How-To.

The next set of function definitions is different than the previous set. One
function within this set uses the third component of exception handling, the
throw statement.

void dbGetDataEH(int field, char *data)

{
int ret = DB_ACCESS_ERROR ;
throw(ret) ;
}
Move forward through the code to the dbGetDataEH() function definition.
Notice that an error code mnemonic is assigned to the ret integer variable. The
next line of code in the function is a throw statement. The argument supplied
to the throw statement is an int variable. You can supply any data type, either
simple or user defined. This function is called within the try block within the
main function. Because this function throws an exception, control is
immediately transferred to the catch clause that follows:
dbGetDataEH(1, data) ;
cout << "Data is: " << data << endl ;
dbCloseEH(theHandle) ;
}
catch(int v) {
cout << "Error with DB: " << v << endl ;
}

This exception handler manages exceptions of type int.

If a statement raises an exception, any statements that follow will not be
executed. In this example, the cout and the dbCloseEH() call are not executed.

Comments

This How-To has taken a quick look at the basics of exception handling. With
these basics, you can begin to reap the benefits of exception handling.

An additional benefit of exception handling is a more logical grouping of

code. Developers tend to group logical sections of code within try blocks,
thereby producing source code that is more readable, robust, and maintainable.

The How-Tos that follow will delve into more detail concerning exception
handling.

R L 419
USE THE VARIOUS CATCH CONTSRUCTS AND RETHROW EXCEPTIONS

COMPLEXITY
INTERMEDIATE

11.2 How do I...
Use the various catch constructs
such as multiple catch clauses,
catch ordering, and the
rethrowing of exceptions?

Problem

| understand that multiple catch clauses can be provided to handle exceptions
thrown from a try block. | am unsure if ordering of catch clauses is important
and want to know if an exception caught can be rethrown by a catch clause.

Technique

The technique required to organize multiple catch clauses is quite easy. The
tricky part is to understand any exceptions that require handling.

The following source code demonstrates how to apply the use of multiple
catch clauses, including the catch-all clause. The technique required to rethrow
exceptions is also shown.

Steps

Change to your base source directory and create a new directory named
CATCH. Next, start your code editor and type in the following source code:

// catch.cpp - demonstrates the use
// of multiple catch clauses
#include <exception>

#include <iostream>

using namespace std ;

void rethrowFunc(int i) ;
void throwFunc(int i) ;

int main()

{
for(int 1 = 0; i < 6; i++)
{

try {
rethrowFunc(i) ;
}

CHAPTER 11

EXCEPTION HANDLING IN C++

catch(int v) {
cout << "Int caught: " << v << endl ;

}
catch(float f) {

cout << "Float caught: " << f << endl ;
}
catch(double d) {

cout << "Double caught: " << d << endl ;
}
catch(char *s) {

cout << "Char* caught: " << s << endl ;
catch(...) {

cout << "Other exception caught" << endl ;
}

}// for loop

return(0) ;

}

void rethrowFunc(int i)
{
try {
throwFunc(i) ;
cout << "rethrowFunc()" << endl ;
}
catch(int v) {
throw ;
}
catch(float f) {
throw ;

}

catch(double d) {
throw ;

}

catch(char *s) {
throw ;

}

catch(...) {
throw ;

}

}

void throwFunc(int i)

{
intx=5,y=0,r=0;

switch(1)

{

case 0:
throw(int(5)) ;
break ;

e RE
USE THE VARIOUS CATCH CONSTRUCTS AND RETHROW EXCEPTIONS

case 1:
throw(float(10.5)) ;
break ;

case 2:
throw(double(21.0)) ;
break ;

case 3:
throw("an exceptional string") ;
break ;

default:
r=x/y;
break ;

}

}

Save the file as CATCH.CPP. Next, exit out of the editor, return to the
command line, and run the compiler and linker, naming CATCH.CPP as
the input file.

Run the cATCH program. The following should be displayed:

Int caught: 5

Float caught: 10.5

Double caught: 21

Char* caught: an exceptional string
Other exception caught

Other exception caught

The source code will be examined in detail in the following section.

How It Works

Starting at the top of the file, you will find two include directives and a using
directive. Next, you will see function declarations for rethrowFunc () and
throwFunc (). The purpose of the throwFunc() function is to throw different
types of exceptions. The rethrowFunc () function’s purpose is to catch
exceptions thrown by throwFunc () and to then rethrow the exceptions. These
two functions are examined in more detail later in this section. But first, let's
continue our journey into the main function.

The first statement in main is a for loop. The for loop provides the logic to
iterate through all the exceptions to throw without excessive lines of code. The
first block of code within the for loop is the try block:

try {
rethrowFunc(i) ;

}

m CHAPTER 11
EXCEPTION HANDLING IN C++

As the code begins its journey down the loop, it enters the try block and
encounters the call to rethrowFunc (). The function is passed the value of i as
its argument. Let’s take a quick diversion to rethrowFunc () definition. This
discussion will only look at the first few lines, as follows:

void rethrowFunc(int i)

{
try {
throwFunc(i) ;
cout << "rethrowFunc()" << endl ;
}
/...

The first logical block of code in this function is another try block. This try
block is independent of the try block found in the main function. The only
statement found within the try is a call to the function throwFunc (). Notice
that the original value of i from main is again passed to throwFunc (). Because
program flow is again being redirected, let's divert our attention to the
definition of throwFunc().

The body of throwFunc () follows:

void throwFunc(int i)

{
int x=5,y=0,r =0 ;

switch(1)
{
case 0:
throw(int(5)) ;
break ;
case 1:
throw(float(10.5)) ;
break ;
case 2:
throw(double(21.0)) ;
break ;
case 3:
throw("an exceptional string") ;
break ;
default:
r=x1/,y;
break ;

The first statement in the function declares three integers for use in a
subsequent expression within the function. Next you find a switch statement,
its argument being the argument to the function. Remember that this argument
is the original value of the integer used in the for loop in main. This provides a
unique value to switch on, so that a different throw can be demonstrated.
Depending on the value, a different case statement is executed.

11.2

USE THE VARIOUS CATCH CONSTRUCTS AND RETHROW EXCEPTIONS

This function will throw one of five types of exceptions: int, float, double,
char*, or divide-by-zero. The last one, divide-by-zero, is defined by the
Standard; it is why the exception header file was included. Take a look at the
default block; if you examine the values of the variables, this expression
divides 5 by 0, obviously a mathematical no-no. The reason | added this line of
code will be obvious later in this section. Beyond the switch and throw
statements, not much else happens in this function. Although simple, it
provides the logic required to rethrow exceptions and demonstrate multiple
catch clauses. Let's now return to the rethrowFunc () function definition. Here
it is again in its entirety:

void rethrowFunc(int i)
{
try {
throwFunc(i) ;
cout << "rethrowFunc()" << endl ;

}
catch(int v) {
throw ;

}
catch(float f) {
throw ;

}
catch(double d) {
throw ;

}
catch(char *s) {
throw ;

}
catch(...) {
throw ;

}

Pay particular attention to the cout statement. If you recall the output of this
program, this statement is never executed. Again, here is the output:

Int caught: 5

Float caught: 10.5

Double caught: 21

Char* caught: an exceptional string
Other exception caught

Other exception caught

Remember that because throwFunc () throws an exception, any statement
following the call to throwFunc () within the try block will not be executed.
Control will instead be diverted to the catch clause that can handle the
exception.

Look again at the previous function definition. Notice that each catch clause
contains a single throw expression. This is referred to as a rethrow expression.
When the exception mechanism encounters a throw expression within a catch

423 p

CHAPTER 11

EXCEPTION HANDLING IN C++

clause, the same exception will be thrown again. You should provide rethrow
logic any time you think the exception should be handled further up the call
chain.

You have to be cautious when dealing with rethrow logic. If, for example,
you modify the exception object and then execute a throw expression, the
changes to the object might not be what you expect. A nonreference object that
is passed as an argument to a catch clause will get a copy of the original object.
Therefore, if you modify the object, you will modify only the local copy. The
following example demonstrates this:

catch(int val) {
val = 32000 ;
throw ;

The argument variable val is assigned the value 32000, but it is the local
copy that gets the new value, not the original object thrown. Therefore, when
the throw expression is executed, the original object will be thrown back up the
call chain. If you need to modify the original object, you should pass by
reference, as the following code snippet shows:

catch(int & val) {

val = 32000 ;

throw ;
}

The last catch clause in the rethrowFunc () is called the catch-all catch
clause and it looks like this:

catch(...) {
/...
}

The ellipsis is required; this signature makes it visually apparent as to the
functionality of this catch clause. The catch-all catch clause must be the last
handler if more than one catch clause exists. The catch-all clause can catch any
exception. Don't take this as an invitation to use the catch-all clause after every
try block.

You have seen how the rethrow expression is used as demonstrated within
the rethrowFunc () function. Because every catch clause within this function
rethrows its exception, you can return to the main function. Again, you find the
same catch clauses after the try block in main, including a catch-all clause.
The for loop iterates six times, each iteration in turn realizing a different
exception. The output of the program confirms this:

Int caught: 5

Float caught: 10.5

Double caught: 21

Char* caught: an exceptional string
Other exception caught

Other exception caught

11.3

IMPLEMENT AND USE AN EXCEPTION CLASS

Notice that the other exception caught text occurs twice in succession.
This text is displayed as a result of the catch-all catch clause. The exception
thrown in this case is a divide-by-zero exception. This exception is generated, if
you recall, in the default case within the throwFunc () function.

Comments

In the previous section, | mentioned that you shouldn't blindly apply catch-all
catch clauses after every try block. However, there are a couple of good
reasons why you might want to use a catch-all clause. One reason is that you
might not know all the exceptions that might be thrown by some function call
or statement within a try block. Another reason might be that you must release
some resource within a function. If some statement generates an exception and
you don’t have a catch clause to handle it, the catch-all will handle it and you
can release the resource there. The following example demonstrates this:

void func()

{

char *buf = new char[30000] ;
try {
functionCall() ;
}
catch(char *s) {
/] code to handle char* exception

}

catch(...) {
delete [] buf ;

}

How can you be sure that functionCall() only throws a char* exception?
Well, you might know it and then again, you might not. You might be dealing
with invalid or out-of-date documentation. The catch-all catch clause ensures
that a memory leak does not occur under this circumstance.

COMPLEXITY

INTERMEDIATE

11.3 How doll...

Implement and use an exception
class?

Problem
I have been using exception handling in my applications and find the use of
native types to be restrictive and uninformative. Is there a way to use a class as
an exception type? And if so, how can | implement such a class type?

CHAPTER 11

EXCEPTION HANDLING IN C++

Technique

In this How-To, a simple application is used to demonstrate the use of an
exception class. The use of an exception class is preferred over simple types
because a class is more expressive.

Steps

Change to your base source directory and create a new directory named
EXCLASS.

Next, start your text editor and type the following source code, exactly as
shown below:

// exclass.cpp - program to demonstrate the
// use of an exception class

#include <iostream>

using namespace std ;

class MathError

{

public:
MathError() : x(0), y(0) {
}

MathError(int x, int y) : x(x), y(y) {
}

void message() {
cout << "MathError exception caught:" << endl ;
cout << "x==" << x << ", y==" <<y << endl ;
}
private:
int x, y ;
Y

int divide(int x, int y) throw(MathError) ;

int main()

{
int x =5, y =0, result =0 ;

try {
result = divide(x, y) ;

}
catch(MathError &m) {
m.message() ;

}

return 0 ;

11.3

IMPLEMENT AND USE AN EXCEPTION CLASS

int divide(int x, int y) throw(MathError)

{
if(y==0)
throw MathError(x, y) ;
return(x / y) ;
}

Save the file as EXCLASS.cPP and exit the editor to the command line.
Compile and link the EXCLASS . cPP source file.
Run the program; the output should be as follows:

MathError exception caught:
X==5 , y::@

How It Works

Begin your use of an exception class by examining the source code. Starting at
the top of the file, you will find an include directive and immediately following
that a using directive.

Next, you come upon the declaration of a class named MathError, as
follows:

class MathError

{

public:
MathError() : x(0), y(0) {
}

MathError(int x, int y) : x(x), y(y) {
}

void message() {
cout << "MathError exception caught:" << endl ;
cout << "x==" << x << ", y==" <<y << endl ;
}
private:
int x, y ;
}s
This class serves as an exception class. An exception class is used to capture
pertinent information about an exception condition. An exception class is used
by an application to create objects of that type. In the mathError class, you will
find two constructors and a member function named message (). The default
constructor is defined inline as is the constructor taking two int arguments.

The message () member function prints out an informational message to
include the values of the instance variables. Within the private section, you
will find the declarations for two int variables. These variables are used to hold
information about a particular exception.

m CHAPTER 11
EXCEPTION HANDLING IN C++

The line of code following the Matherror class declaration is a function
declaration for divide():

int divide(int x, int y) throw(MathError) ;
Notice the exception specification for the divide () function; this function

states that it will throw an exception of type MathError and only MathError. If
you are unfamiliar with exception specifications, refer to How-To 11.4.

Next, you come to the main function. Starting with the first line of code
within main, you will see the declaration of three integer variables.

Following the variable declarations, you come upon the try-catch section
of code shown here:

try {
result = divide(x, y) ;

catch(MathError &m) {
m.message() ;
}
The try block consists of a single statement, a call to the function divide().
The divide() function is passed two integer arguments and the result of the
call is returned to the variable result.

Now turn your attention to the definition of divide () shown here:

int divide(int x, int y) throw(MathError)

{
if(y==0)
throw MathError(x, vy) ;
return(x / y) ;
}

Again, you will notice the exception specification for the function. Within
the function, the first line checks to see whether the denominator, represented
by vy, is zero. If y is zero, an exception of type MathError is thrown, otherwise
the return statement is executed, returning the result of the expression x/y.

Take note of the throw expression in divide (). An object of type MathError
is created, although it is not explicitly shown. The compiler creates a hidden
temporary for the constructor call. Next, a copy of this temporary is created
and passed to the exception handler. The temporary is then destroyed, even
before the exception handling mechanism begins its search for a handler.

Let’s now return to the main function to continue the journey. Turn your
attention to the catch clause because the divide () function throws an
exception. The catch clause follows:

11.3

IMPLEMENT AND USE AN EXCEPTION CLASS

catch(MathError &m) {
m.message() ;

}

The argument to a catch clause can be an object or a reference to an object.
If you decide to rethrow an exception, you should consider using a reference as
the argument. The most compelling reason is that if you alter the exception
object, the changes are reflected in the rethrow of the object. If an object is
passed, you operate on only the local object passed in to the catch clause. The
following code snippet should illuminate this fact:

catch(MathError m) {
m.setMessage("Divide by zero exception") ;
throw ;

In this version, the exception object is a copy of the original object thrown.
The call to the member function setMessage () is executed to change the
internal message that the exception class will eventually display. The problem
with this version is that m is a local object to the catch clause block. This object
will cease to exist when the throw is encountered. The next catch clause that
handles this exception will not get the altered object. To remedy this problem,
you must make m a reference, as shown here:

catch(MathError &m) {
m.setMessage("Divide by zero exception") ;

throw ;
}

Now;, the call to setMessage () will operate on the original object, so the
next handler to receive the object will realize the changes made in this catch
clause.

Comments

You should always consider providing an exception class rather than a simple
type. The main reason is that simple types such as int and double do not
provide sufficient information in processing an exception condition. An
exception class provides a level of detail required to sufficiently handle and
report an exception to users.

In this How-To, you saw how to create an exception class and use it. A more
robust exception class might write information to a log file or capture additional
information about an exception or the environment of the user. The possibilities
are limited only by your imagination.

CHAPTER 11

EXCEPTION HANDLING IN C++

COMPLEXITY
INTERMEDIATE

11.4 Howdo I...
Specify exceptions that a function
will throw?

Problem

I have been using the C++ exception handling mechanism and want to know
how I can specify the exceptions thrown by a function. Isn't there a way to do
this without relying on source code comments or documentation?

Technique

This can be a source of confusion to many developers. | have been approached
with this question on numerous occasions. This How-To will demonstrate the
use of exception specifications.

Steps

Change to your base source directory and create a new directory named
SPEC.

Start your editor and type in the following source code:

// spec.cpp - program to demonstrate
// exception specifications

#include <exception>

#include <iostream>

using namespace std ;

void funci1(int val) throw(int, char*) ;
void func2(void) throw(float) ;
void func3(void) throw() ;

int main()
{
for(int i = 0; i < 3; i++)
{
try {
switch(i) {
case 0 :
func1i(0) ;
break;

case 1 :
func2(1) ;
break;

AT RE—
SPECIFY EXCEPTIONS THAT A FUNCTION WILL THROW

case 2 :
func3() ;
break;
}
}
catch(int val) {
cout << "int caught: " << val << endl ;

catch(float val) {

cout << "float caught: " << val << endl ;
}
catch(char *val) {
cout << "char* caught: " << val << endl ;
}
Y/ 1 for
return 0 ;
}
void funci(int val) throw(int, char*)
{
if(val == 0)
throw(int(20)) ;
else
throw("exceptional string!") ;
}
void func2() throw(float)
{
throw(float(10.5)) ;
}
void func3() throw()
{
}

Save the file as sPec.cppP and exit the editor to the command line.

Compile and link the sPEC.cPP source file.

- N

Run the program; the output should be as follows:

int caught: 20
char* caught: exceptional string!
float caught: 10.5

How It Works

Let us start at the beginning of the source file. Moving past the include and
using directives, the next section of code is as follows:

void funci1(int val) throw(int, char*) ;
void func2(void) throw(float) ;
void func3(void) throw() ;

CHAPTER 11

for(int i

{

EXCEPTION HANDLING IN C++

These are, of course, function declarations. | am sure you have noticed
something quite different about these declarations, namely the exception
specifications.

The first two exception specifications are obvious: func1() can throw only
an int or a char* and function func2() can throw only a float. What
exceptions will the function func3() throw? That is not so obvious. Let’s think
about this one: The exception specification is empty, right? That must mean this
function guarantees not to throw any exceptions. The assumption proves to be
correct; func3 () guarantees to not throw an exception.

You should be thinking about this fact whenever you are designing and
coding functions and member functions. If the applications you are building
utilize the exception handling facilities, you should consider marking all your
functions with an exception specification. Attention to detail, although tedious,
eventually pays off—the intent of your code becomes much clearer.

How about functions not marked with an exception specification? Well,
those functions have free rein concerning the throwing of exceptions. Quite
literally, a function without an exception specification can throw any and all
conceivable exceptions. It is my opinion that you are better off using exception
specifications for functions that do and do not throw exceptions. The
developers who will maintain your code will thank you also.

As you move down through the source code, you come upon the main
function. Inside main, you come upon the for loop used to call one of the three
functions previously declared. The functions are called one at a time, within the
try block. The section of code follows:

=0; 1< 3; it++)

try {

switch(i) {
case 0 :
func1i(0) ;
break;

case 1 :
func1i(1) ;
break;

case 2 :
func2() ;
break;

For each iteration of the for loop, the try block is entered and based on the
value of i, the proper case is selected within the switch. A call is made to either
funci1() or func2(); in both cases, an exception is thrown. In the case of
func1(), an exception of type int or char* is thrown depending on the value
the argument passed.

11.4

SPECIFY EXCEPTIONS THAT A FUNCTION WILL THROW

Moving past the try block, you find three catch clauses. Each catch clause
is designated to handle a different exception type. The catch-all catch clause
could have been added to the list, but would have never realized its value
because the code is handling all types of exceptions. In essence, the programs
has been designed and coded for the known exceptions. In situations in which
you don't know all the exceptions thrown, you should put up your guard by
providing the catch-all handler. In any event, within each catch clause, a cout
statement is executed to acknowledge the receipt of the exception.

As you move down the source file past the main function, you find the
definition for func1 (). You can see that the exception specification is again
specified; this is in addition to the function’s declaration. The logic for the
function is simple: If the value is @, throw an int; otherwise, throw a char*.

The definition for func2 () is found next within the source code. Again, you
see the exception specification as part of the signature. This function merely
throws a float.

Finally, the definition for func3() is encountered. If you recall, this function
guarantees to not throw an exception. As you can see by the empty definition,
the guarantee is fulfilled.

Comments

Utilizing exception specifications leads to readable and maintainable source
code. The use of exception specifications also provides a form of
self-documenting code. The other option you have is to furnish comments at
the declaration and definition for a function that throws exceptions. The
problem with that is the lack of consistency; someone might add an exception
within the definition and forget to document the declaration.

Once again, an exception specification follows a function’s argument list and
consists of the keyword throw, followed by a list of exception types encased
within parentheses. If the exception list is empty, the function guarantees not to
throw an exception.

What if a function throws an exception not specified within the exception
specification list? You might think the compiler could catch the various
exceptions thrown by examining the throw statements. In reality, the compiler
isn't quite that smart. The following example illustrates that fact:

void f() throw(int)

{

int i, § , k ;

/...

k=177 ;

/...

RE—

CHAPTER 11

EXCEPTION HANDLING IN C++

This function definition states that the function will only throw an exception
of type int. The problem is that a divide-by-zero exception could be thrown;
the compiler can't possibly know this. I'm sure a compiler vendor can provide a
compiler switch to produce a warning message whenever it encounters a
division expression. However, | assume most developers would turn that switch
off, especially if developing an accounting package. The point is that you
should not rely on the exception specification to tell you all the exceptions a
function will throw.

What if a function throws an exception not listed within the exception
specification? The library function unexpected() is called. This will happen
only if the function does not handle the unknown exception. For example, you
might provide the catch-all catch clause for this purpose. The default action for
unexpected() is to invoke the library function terminate (). It might be in
your best interest to override unexpected() S0 you can control its behavior.
How-To 11.5 explains how to handle this situation.

COMPLEXITY
INTERMEDIATE

11.5 Howdo I...
Handle exceptions that are not
caught or not expected?

Problem

The applications | am writing include exception handling, but exceptions are
still being thrown. Is there any way that the application can process unhandled
exceptions gracefully?

Technique
In this How-To, you will see how to handle exceptions that are not handled or
unexpected. Although you might provide exhaustive measures to handle
exceptions, there will be instances in which exceptions are missed. The example
provided here will help alleviate uncaught exceptions.

Steps

Move to your base source directory and create a new subdirectory named
UNEXPECT.

11.5

HANDLE EXCEPTIONS THAT ARE NOT CAUGHT OR NOT EXPECTED

As usual, start your favorite text editor and type in the following source

3

>

code:

// unexpect.cpp - program to demonstrate the
// handling of unexpected exceptions
#include <iostream>

#include <cstdlib>

using namespace std ;

typedef void(*pUnExp)() ;

class ErrorClass

{
public:

ErrorClass() ;

void message() { cout << "ErrorClass" << endl ; }
s

void func(void) throw(ErrorClass) ;

void unexpectedHandler()

{
cout << "Unexpected handler!" << endl ;
exit(1) ;
}
int main()
{
pUnExp oldHandler2 = set_terminate(unexpectedHandler) ;
try {
func() ;
}
catch(ErrorClass &e) {
e.message() ;
}
return 0 ;
}
void func() throw(ErrorClass)
{
throw(double(10.0)) ;
}

Save your work in a file named UNEXPECT.CPP and exit the editor back to
the command line.

Next, execute the compiler and linker on the source file UNEXPECT. cPP. If
your compiler does not support the cstdlib header, include stdlib
instead.

RES—

CHAPTER 11

EXCEPTION HANDLING IN C++

Now, run the program. The output should be as follows:

Unexpected handler!

How It Works

Begin your exploration of unexpected exceptions at the top of this source file.
The sixth line of code provides a typedef to the declaration of the error handler
as shown here:

typedef void(*pUnExp) () ;

void func(

void func(

{
}

throw(

This typedef says that punExp is a pointer to a function taking no arguments
and returning nothing.

The next block of code declares a class named ErrorcClass. It is used as an
exception class to process exceptions. ErrorClass contains a default
constructor and a member function message () to print out a diagnostic
message.

The next line of code is a function declaration for func () as shown:

void) throw(ErrorClass) ;

This function declaration also includes an exception specification. The
exception specification states that func () will throw an exception of type
ErrorClass

Next, you come to the function definition unexpectedHandler (). This
function is used to process unexpected exceptions. The function contains two
statements: cout and exit (). You should provide appropriate functionality
required to process unexpected exceptions; this code provides a basic example.

The first line of code in the main function is a call to the set_terminate()
library function. This call will set the function unexpectedHandler () to handle
unexpected exceptions. The return from set_terminate() is the address of the
most current handler.

The next block of code consists of a try-catch code section. A call to
func () is made within the try block. The only handler defined consists of the
catch clause accepting an exception object of type ErrorcClass.

Let’s turn our attention to the definition of func (). The definition follows:

) throw(ErrorClass)

double(10.0)) ;
Notice that the exception specification specifies that this function will only

throw exceptions of type ErrorClass. But hold on a minute—what do you see
in the body of the function? The throw expression throws a double.

T REE—
HANDLE EXCEPTIONS THAT ARE NOT CAUGHT OR NOT EXPECTED

However, there is no need to worry because the application is prepared to
process unexpected exceptions as the following shows:

Unexpected handler!

You might have expected to see the following message:

ErrorClass

This is the message displayed from the Errorclass’s member function
message (). Indeed, the catch clause in the main function contains the call:

e.message().

Because the exception thrown is not of type Errorclass, this catch clause
never gets the opportunity to handle the exception. Instead, the exception
handling mechanism looks up the address of the current unexpected handler
and invokes the function unexpectedHandler (), which is defined within this
application.

Comments

Considering most applications these days exceed 100,000 lines of code, it is
imperative that you take a defensive stance when designing and developing
applications. Exception handling is a feature you should be utilizing.
Unexpected exceptions can take you by surprise if your application is not
prepared to handle the unexpected. This How-To introduced you to handling
unexpected exceptions. With this knowledge, you are in a better position to
express your defensive programming position.

PART V
MEMORY
MANAGEMENT

— CHAPTER 12
NEW AND DELETE

VERSUS MALLOC()

AW\ [) »

NEW AND DELETE
VERSUS MALLOC()
AND FREE()

How do I...

12.1

12.2

12.3

12.4

12.5

12.6

Use new and delete with the C malloc() and free()
routines?

Use other C mem. .. routines on objects allocated
with new?

Find out how much memory my structures and
classes really take?

Prevent memory leaks caused by not using
delete[] to delete arrays?

Override the new or delete operators for my
classes?

Overload the new and delete functions for arrays?

CHAPTER 12

12.1

12.2

12.3

12.4

NEW AND DELETE VERSUS MALLOC() AND FREE()

This chapter compares and contrasts the differences between the C++ new and
delete operators and the C functions malloc() and free(), and their place in
C++ memory management.

As with the I/O libraries, programmers must often resolve (or at least be
aware of) problems that can occur when old and new techniques are used
side-by-side. These situations can occur when older C++ Standard
(or non-standard, or worst of all, poorly written) code or legacy C code has to
be integrated with new programs and code. This is common—many companies
still use old libraries developed in C with their C++ programs.

Both the C++ operators and the C functions are part of a memory manage-
ment system that is part of your compiler’s runtime library. Many compiler
vendors extend these libraries, and others (as well as third parties) provide tools
to troubleshoot the use of the libraries (such as Inprise’s Borland CodeGuard
provided with the Borland C++ compilers).

This chapter addresses some common issues involving the use of the new
and delete operators, as well as potentially tricky operating system and
compiler issues.

Use new and delete with the C malloc() and free()
Routines?

Often programmers find themselves having to work with or integrate existing C
code into their C++ programs. This How-To discusses possible issues with
doing this.

Use Other C mem. .. Routines on Objects Allocated
with new

Although C++ provides built-in replacements for malloc() and free(), other
memory functions are often needed. Some pointers to possible problems
(no pun intended) are discussed in this How-To.

Find Out How Much Memory My Structures and
Classes Really Take

There is a lot more to calculating the sizes of structures and classes than first
meets the eye. Considerations such as the operating system and compiler
settings can have far-reaching effects.

Prevent Memory Leaks Caused By Not Using
delete[] to Delete Arrays
This How-To is a discussion of memory debugging tools and techniques.

S 445 p
USE NEW AND DELETE WITH THE C MALLOC() AND FREE() ROUTINES

12.5 Override the new or delete Operators for My
Classes

This How-To shows how to overload the new and delete operators to
implement a simple memory statistics keeper.

12.6 Overload the new and delete Functions for Arrays

Building on the statistics keeper from the preceding How-To, this How-To
discusses some additional issues for overloading the array handling versions of
new and delete.

COMPLEXITY
INTERMEDIATE

12.1 How doll...
Use new and delete with the C
malloc() and free() routines?

Problem

Many programming books state that using new and delete along with
malloc() and free() related C routines is a bad idea. Is it really unsafe?

Technique

For most modern C++ compilers and runtime libraries, using both is quite safe.
However, the reason all the programming books and instructors preach so
fervently against the use of malloc() and free() is that the code you
write—intended to be rather “pure” C++ code—should, of course, be free of
any C language baggage.

Other arguments used against using both the C-style memory allocations and
C++s new and delete operators are error-handling issues in the new versions of
C++. If new fails, it will no longer return null; instead, it will throw an
exception. This has the effect of somewhat simplifying the code because it is not
filled with if statements that check for failed allocations. Instead, your code
can concentrate on getting the job done. If your program needs to deal with
these exceptions rather than terminate, enclosing all code ina try { ... }
catch sequence will allow you to keep all error handling in one place. (See
Chapter 11, “Exception Handling in C++.”) Naturally, the C allocation functions
still return null if they fail, so code using them could very well end up being
tougher to read and maintain.

CHAPTER 12

NEW AND DELETE VERSUS MALLOC() AND FREE()

In reality, most modern C++ memory managers used by the new and delete
operators are in fact the same memory managers that Cs malloc() and free()
routines use. However, there are some differences in how the different ways of
allocating memory are handled for each method, so the “Steps” section has
some relatively simple rules to follow when you're working (or have to work)
with C memory.

Steps

Intermingling the C and C++ ways of allocating and freeing memory is not
recommended, although most compilers’ runtime libraries handle the
combination correctly.

Check your code against these simple rules when both have to be used:

Never use free () to de-allocate memory allocated with new.

Never use delete to free memory allocated with malloc ().

That’s it. These are simple but important rules to validate your code. This is
really a compiler or runtime library issue more than a language issue. Officially,
the two are not supposed to be mixed, but most compilers keep them as
compatible as possible to minimize complaints.

COMPLEXITY

INTERMEDIATE

12.2 How do ...

Use other C mem. .. routines on
objects allocated with new?

Problem
A plethora of functions is available in the C header files string.h and mem.h.
Functions such as memcpy () and memmove () are handy, and it would be nice to
confirm whether it is possible to use them in C++.

Technique

Yes, it’s possible to use the C memory manipulation functions. Most of the
mem. . . functions take void pointers as arguments, which are generic memory
references that are not managed by the memory manager.

i R
FIND OUT HOW MUCH MEMORY MY STRUCTURES AND CLASSES TAKE

For instance, this C++ code snippet is perfectly valid, assuming that the
header files are C++ safe. (That is, that they have been appropriately modified
for use with a C++ compiler. It safe to say that all header files that come with
your C++ system are correct.)

#include <string.h>

char* MyMemory = new char[1500];
memset (MyMemory, @, 1500);
delete[] MyMemory;

Of course, production code would wrap the allocationina try { ... }
catch sequence to make sure the call to new was successful before calling
memset ().

How It Works

After a pointer exists, functions that do not have anything to do with memory
allocation or de-allocation work the same way they did in C.

Comments

It is useful to peruse the header files for the C functions you want to use in
your programs, because many compiler vendors have extended the C++
versions to include default arguments. Because C++ implements much stricter
type checking than C, its also useful to know the specific types. Unlike C, for
instance, the char and int types cannot be interchanged, and doing so will
cause some compiler warning messages.

COMPLEXITY
INTERMEDIATE

12.3 How do l...
Find out how much memory my
structures and classes really take?

Problem

Sometimes it is not readily apparent how much actual memory an object uses.
This is especially important to understand when moving data formats between
16- and 32-bit platforms.

448 CHAPTER 12

NEW AND DELETE VERSUS MALLOC() AND FREE()

Technique

Instantiated classes take the same amount of space as all their data members,
which is system dependent. On 32-bit systems, each integer, unsigned int,
and pointer takes 4 bytes, chars take 1 byte, unicode chars take 2 bytes, and
floats are 4 bytes, doubles are 8 bytes, and 1long doubles are 10 bytes on
Intel processor machines.

This is by no means the end of it. The byte alignment setting on your
compiler modifies the real amount of memory your structures and classes take.
Some compilers default to specific settings, and others allow complete control
over this setting.

Byte Alignment
Your compiler will likely have settings for byte alignment. These options can
increase the performance of your programs on some processors, because most
processors incur a sometimes-significant performance penalty when they are
fetching data that does not end on their alignment boundary.

For instance, the Intel 486 processor uses a 32-bit data bus. When fetching a
16-bit integer (an int in DOS and 16-bit Windows), it actually fetches the
whole 32 bits of memory. Further, from the processor’s point of view the
memory is actually divided into 1/4 of the actual bytes of memory available
(4 bytes = 2 16-bit words). Even the 32-bit Intel processors refer to one 32-bit
value as a double word or DWORD, and the processor can only retrieve data
based on these boundaries.

This might not seem significant at first glance, but take a moment to think
through the following example.

If the integer is a structure or class like this

struct {

char MyChar ;

long int myLongInt ;
} MyStruct ;

when your program is byte-aligned (the smallest granularity possible on a PC),
the computer (assuming it is a 386DX or later processor) will fetch the 32-bit
region containing Mychar when the member is referenced. It will then shuffle
the bits around appropriately to allow your program to work with the variable.
One time out of four the structure will line up correctly, but the rest of the time
the computer will have to do some work to make it possible for this variable to
be worked with.

When fetching MyLongInt, there is a 50% percent chance the system will
have to fetch only one 32-bit word to get all of MyLongInt. The other 50% of
the time, it will have to do 2 fetches—first it gets the least significant bytes, and
then the most significant bytes, and then shuffles the data to get one 32-bit

i 449 py
FIND OUT HOW MUCH MEMORY MY STRUCTURES AND CLASSES TAKE

integer. If you think this has to be slower, you're absolutely right. It adds a lot
of overhead.

There are other byte-alignment issues as well. Most code starting points (for
example, functions) perform best when started on these 4-byte boundaries, and
little performance gains can add up quickly.

If the structure were aligned on a 4-byte boundary, Mychar would start on a
4-byte boundary, and myLongInt would also, and there would be 24 bits of
wasted space between the two, meaning the actual struct would be 8 bytes,
rather than 5 bytes in size.

With the preceding in mind, envision the following development scenario:
Two groups of developers have to make binary files transportable between their
respective applications. To that end, they share some header files that define the
structures the programs use. If one group used 2-word (4 bytes) byte alignment
in its compiled application, and the other one did not, their structure sizes are
not likely to match when the data is read back from the file. The result will
likely be that some poor programmer has to dig through code that might be
just fine, only to discover at some point that the actual structure sizes written to
disk differ.

How can a programmer account for this? For the most part, it involves some
knowledge about the development system and operating system in use. Just
knowing C++ is not enough when these machine- and OS-dependent issues
come into play. If you're working with outside code, especially executables, it’s
tough to find out what the byte alignment setting was.

Making Your Structure Work with All Settings

The most common way to make your structure work with all settings is to
byte-pad structures to make sure (for the PC architecture) they take up some
multiple of 4 bytes. This ensures the alignment will be the same for compilers
using any of the three settings for compilation. A more alignment-safe structure
would look like this:

struct {
char MyChar ;
char[3]/* reserved */ ;
long int myLongInt ;

} MyStruct ;

Some compilers might insist that you name the second data member, but
most don't.

You should watch for structure alignment issues when working with binary
files, binary data transfers, operating system, and even lower level structures.
Mismatched byte-alignment settings cause all sorts of bugs (in the form of
garbage values) to creep into your programs.

m CHAPTER 12

NEW AND DELETE VERSUS MALLOC() AND FREE()

Steps
Probably the easiest way is to use the sizeof () operator to return the size of
the objects that are being worked with.
For example, to output the size of a previously declared class MyClass, use

cout << "Size of myclass: " << sizeof(MyClass) << endl ;

If this seems like too much work, try adding up the data member according
to the sizes above.

This will also show possible byte-alignment problems. Anytime your
structure or class contains chars, a little flag should go up to ensure the struc-
ture is byte-alignment safe. | call this defensive coding, and it can save you a lot
of long hours and lost sleep.

COMPLEXITY
INTERMEDIATE

12.4 How dol...

Prevent memory leaks caused by
not using delete[] to delete
arrays?

Problem

Using the delete operator on an array does not delete all the memory allocated
for the array. delete[] must be used instead.

Technique

A memory debugger such as Inprise’s venerable Borland CodeGuard tool can be
invaluable as a safety check for your code. Other systems and compilers either
come with their own memory-debugging library or have one available for them.

Source code analyzers can often detect these errors, too—tools such as lint
can be very useful for finding all sorts of possible problems with code.

Steps
Check your code for any statements that allocate arrays with new, and find the
corresponding delete statement.

Whenever an array is allocated with new, the actual operator used is new[].
Unfortunately, most documentation and programmers’ texts do not distinguish
between the two for fear of confusing beginning programmers.

G REE—
OVERRIDE THE NEW OR DELETE OPERATORS FOR MY CLASSES

Allocating an array like this

char* myArray = new char[45] ;

calls new[], although the brackets appear later on. Free the storage allocated
this way:
delete[] myArray ;
The steps for this How-To are relatively simple:

Find all occurrences of new in your code. Utilities such as grep are useful
for this.

Check to see if these new operators allocate arrays.

Ensure that the delete[] operator is used to delete the arrays.

How It Works

The delete[] syntax is used to explicitly inform the memory manager that an
entire section is to be deleted. Although most memory managers do keep
detailed information on the memory allocated, calling plain delete for an array
deletes the first location of the array, and nothing else, by definition.

Some memory managers are smarter than this, but at times they will have
compatibility problems with some C++ code that exploits this “feature.”

COMPLEXITY
ADVANCED

125 How do I...
Override the new or delete
operators for my classes?

Problem

There are lots of possible reasons you would want to override the standard new
and delete operators for a class or even an entire program.

Here is a short list of things that can be accomplished by overloading the
new and delete operators (this is by no means complete):

= Debugging your program's memory management.

« Taking advantage of operating system—specific routines that might be
more efficient than the compiler’s included memory allocation routines.

e Gathering statistics for memory allocation and deallocation in your
program for performance or efficiency reasons.

m CHAPTER 12
NEW AND DELETE VERSUS MALLOC() AND FREE()

Technique

Overriding the new and delete operators for classes is achieved very much the
same way any other operator is overloaded. The only thing that really needs to
be known is the number of bytes to be allocated for the new operator:

void* myclass::operator new(size_t bytes_to_allocate)

The function must return a pointer of type void, and takes a size_t
argument (usually defined as a 32-bit int in the file stddef.h, which you
might have to include) to indicate the size of the object. This is the same
number returned by the built-in function sizeof ().

The delete operator does not return anything; it takes a void pointer and
size_t as arguments.

void myclass::operator delete(void* obj, size_t size)

Again, size t is defined in stddef.h, and this will likely need to be
included in your program.

There is quite a caveat attached to this technique, however. Remember the
previous discussion of the operator delete[]? The technique shown here does
not overload this operator, nor the new[] version thereof. That means the
overloading technique is only really useful for some debugging and statistics
work. Granted, everyone uses STL vector classes now, right? (Now there’s a
subtle hint...)

Allocating the memory is also possibly tricky—it is easiest to allocate the
space using an array of char. However, some platforms, such as Unicode-based
systems, do not use 1-byte characters. Production code should determine the
size of a char before allocating the memory to ensure that twice the memory
needed is not allocated by accident.

Steps
For this example, a simple memory allocation counter will be implemented—it
will keep track of the total bytes allocated, deleted, and the number of calls to
new and delete operators. You might be surprised at the execution results
because allocating an array of these objects does not show in the statistics.

Create a class that contains statistics or information you want to keep
track of. In this case, it will be just bytes allocated, de-allocated, and the
number of calls to new and delete. These are by no means the only
things that can be dealt with this way. The following code shows the class
to keep memory statistics:

class MemStats

{

private:

G REE—
OVERRIDE THE NEW OR DELETE OPERATORS FOR MY CLASSES

unsigned BytesAllocated ;
unsigned BytesDeleted ;
unsigned CallsToNew ;
unsigned CallsToDel ;

fstream StatsFile;
public:

MemStats() : BytesAllocated (@), BytesDeleted(0),
O0CallsToNew(@), CallsToDel(0)
{
StatsFile.open("memstats.txt", ios::out) ;
if(!StatsFile)
throw runtime_error("Could not open memstats.txt") ;

}

MemStats(const string& filename) : BytesAllocated(0),
OBytesDeleted (@), CallsToNew(@), CallsToDel(0)

{
StatsFile.open(filename.c_str() , ios::out) ;
if(!StatsFile)
throw runtime_error("Could not open user-defined
Ofile.") ;
}

// these functions can be expanded to do all sorts of other
// things, like print more info into the output file, time
// and date, etc. or keep track of the allocated chunks of
// memory in an associative array.

void newcalled(size_t size)

{
CallsToNew++ ;
BytesAllocated += size ;
}
void delcalled(size_t size)
{
CallsToDel++ ;
BytesDeleted += size ;
}
~MemStats ()
{
StatsFile << endl
<< " Memory allocation statistics : " << endl
<< " (the numbers below should match)" << endl
<< endl
<< " Bytes Allocated : " << BytesAllocated << endl
<< " Bytes Deleted : " << BytesDeleted << endl
<< " Calls to new : " << CallsToNew << endl
<< " Calls to delete : " << CallsToDel << endl

<< endl ;

CHAPTER 12

NEW AND DELETE VERSUS MALLOC() AND FREE()

StatsFile.close() ; // explicitly close file to make
// doubly sure.
}
o

Note that all the functions are inlined in order to not excessively impact
the performance of the code being profiled.

For the class you want to monitor, overload the respective new and
delete functions. After the statistics are updated, the easiest way to
actually allocate the memory for most situations is to call the global
operators to allocate and de-allocate memory. To call a global operator,
use the member-of operator (::) without a scope name, that is, : :new.
You must also make the statistics-keeping object accessible to the new and
delete functions of your class. In this case, using a global variable was
convenient, but it could just as easily have been a data member of the
class. The following code shows the overloaded new and delete
functions:

void* operator new(size_t size)

{
stats.newcalled(size) ;
return (void*) ::new char[size] ; // allocate specified
// number of bytes with the actual new operator
}
void operator delete(void* mem, size_t size)
{
stats.delcalled(size);
::delete[] mem ;
}

When allocating memory with code like this
::new char[size]
be sure to use the proper version of delete to free the memory:

::delete[] mem

It is easy to become confused when implementing the singular version of
new and delete that actually allocates an array of data.

Its important to remember that byte sizes are not the same across
platforms; a DOS char type is 1 byte, but some systems (such as
Unicode) use 2-byte characters. When overloading new and delete in
production code, it is important to write code to make this distinction to
prevent your program from using two (or more) times the amount of
memory it should.

LB RE——
OVERLOAD THE NEW AND DELETE FUNCTIONS FOR ARRAYS

How It Works

After the new and delete operators are overloaded, single calls to allocate an
instance of the class will be processed through the overloaded functions. The
key thing to remember is that allocating arrays of that class will not call the
overloaded new and delete functions. These are allocated though the global
new[] and delete[] operators, which are not guaranteed to be overloadable on
all C++ compiler implementations.

Comments

It is absolutely critical to remember to deallocate memory properly in the
delete operator, or risk memory leaks in your program. The operating system
or runtime library will clean up after your program when it terminates, but
there is nothing more frustrating than watching 10 or more hours of
calculations go down the drain because the program ran out of memory.

COMPLEXITY
ADVANCED

12.6 How doll...
Overload the new and delete
functions for arrays?

Problem

Now that | know how to overload the singular new and delete operators, it
would be nice to overload the array-based new[] and delete[] Operators, too.

Technique

Overloading the array allocation and de-allocation routines for a class is
compiler dependent. Some compiler versions (namely Borland C++ 5) do not
pass the correct array size to the delete[] operator, for instance, making
accurate statistics keeping difficult. The sample code is located in the
newdel\ex2 subdirectory, with pre-compiled executables from the DJIGPP and
Borland compilers.

The function prototypes for new[] and delete[] operators are as follows:
void* myclass::operator new[](size_t size)
void myclass::operator delete[](void* data, size_t size)

The size_t argument for delete[] is optional on some C++ compilers.

CHAPTER 12

NEW AND DELETE VERSUS MALLOC() AND FREE()

Steps
Its probably worth trying to compile the sample program with your compiler to
make sure the new[] and delete[] operators are overloadable and
implemented correctly. Also, note that the sample code in this How-To is based
completely on the code from the previous How-To, with the additional operator
overloaded.

Create a class to keep your statistics. The sample program keeps track of
bytes allocated and deleted and calls to new, delete, new[], and
delete[]. The following is the code for keeping the memory statistics.
Note the modifications from the previous How-To.

class MemStats

{

private:

unsigned BytesAllocated ;
unsigned BytesDeleted ;
unsigned CallsToNew ;
unsigned CallsToDel ;
unsigned CallsToNewArray ;
unsigned CallsToDelArray ;

fstream StatsFile;

public:

MemStats() : BytesAllocated(0), BytesDeleted(0),
OCallsToNew(@), CallsToDel(0),
OCallsToNewArray(0),
OCallsToDelArray(0)

{

StatsFile.open("memstats.txt", ios::out) ;
if(!StatsFile)
throw runtime_error("Could not open memstats.txt") ;

}

MemStats(const string& filename) : BytesAllocated(0),
OBytesDeleted (@), CallsToNew(OQ),
OCallsToDel(@), CallsToNewArray(0),

O CallsToDelArray(0)
{
StatsFile.open(filename.c_str() , ios::out) ;
if(!StatsFile)
throw runtime_error("Could not open user-defined
O file.") ;
}

// these functions can be expanded to do all sorts of other
// things, like print more info into the output file, time
// and date, etc. or keep track of the allocated chunks of
// memory in an associative array.

12.6

OVERLOAD THE NEW AND DELETE FUNCTIONS FOR ARRAYS

void newcalled(size_t size)

CallsToNew++ ;
BytesAllocated += size ;
}
void newarraycalled(size_t size)
{
CallsToNewArray++ ;
BytesAllocated += size ;
}
void delcalled(size_t size)
{
CallsToDel++ ;
BytesDeleted += size ;
}
void delarraycalled(size_t size)
{
CallsToDelArray++ ;
BytesDeleted += size ;
}
~MemStats ()
{
StatsFile << endl
<< " Memory allocation statistics : " << endl
<< " (the numbers below should match)" << endl
<< endl
<< " Bytes Allocated : " << BytesAllocated << endl
<< " Bytes Deleted : " << BytesDeleted << endl
<< " Calls to new : " << CallsToNew << endl
<< " Calls to new[] : " << CallsToNewArray << endl
<< " Calls to delete : " << CallsToDel << endl
<< " Calls to delete[]:" << CallsToDelArray << endl
<< endl ;
StatsFile.close() ; // explicitly close file to make
// doubly sure.
}

Y

Overload the new, delete, new[], and delete[] operators for the class
you want to monitor. Depending on what needs to be tracked, not all the
functions need to be implemented or defined. The following listing shows
the implementation of the overloaded new, new[1, delete, and delete[]
operators:

class MemStats

{

private:

unsigned BytesAllocated ;
unsigned BytesDeleted ;
unsigned CallsToNew ;

CHAPTER 12

NEW AND DELETE VERSUS MALLOC() AND FREE()

unsigned CallsToDel ;
unsigned CallsToNewArray ;
unsigned CallsToDelArray ;

fstream StatsFile;

public:

MemStats() : BytesAllocated(0), BytesDeleted(0),
OCallsToNew(@), CallsToDel(Q),
OCallsToNewArray(0),
OCallsToDelArray(0)

{

StatsFile.open("memstats.txt", ios::out) ;
if(!StatsFile)
throw runtime_error("Could not open memstats.txt") ;

}

MemStats(const string& filename) : BytesAllocated(0),
OBytesDeleted (@), CallsToNew(Q),
JCallsToDel(0),
OCallsToNewArray(0),
OCallsToDelArray(0)

StatsFile.open(filename.c_str() , ios::out) ;
if(!StatsFile)
throw runtime_error("Could not open user-defined
Ofile.") ;

// these functions can be expanded to do all sorts of other
// things, like print more info into the output file, time
// and date, etc. or keep track of the allocated chunks of
// memory in an associative array.

void newcalled(size_t size)

CallsToNew++ ;
BytesAllocated += size ;
}
void newarraycalled(size_t size)
{
CallsToNewArray++ ;
BytesAllocated += size ;
}

void delcalled(size_t size)

{
CallsToDel++ ;
BytesDeleted += size ;

12.6

OVERLOAD THE NEW AND DELETE FUNCTIONS FOR ARRAYS

void delarraycalled(size_t size)

CallsToDelArray++ ;
BytesDeleted += size ;
}
~MemStats()
{
StatsFile << endl
<< " Memory allocation statistics : " << endl
<< " (the numbers below should match)" << endl
<< endl
<< " Bytes Allocated : " << BytesAllocated << endl
<< " Bytes Deleted : " << BytesDeleted << endl
<< " Calls to new : " << CallsToNew << endl
<< " Calls to new[] : " << CallsToNewArray << endl
<< " Calls to delete : " << CallsToDel << endl
<< " Calls to delete[]:" << CallsToDelArray << endl
<< endl ;
StatsFile.close() ; // explicitly close file to make
// doubly sure.
}

Y

When implementing the new and new[] functions, the easiest way to get
them to return memory is to call the global operator : :new[] to allocate
an array of char. It is also possible, of course, to call your operating
system—-specific memory allocation functions. There might be type size
issues here; a char is not necessarily one byte on all platforms.

Remember that if you have allocated memory in the new and new[]
functions, you must use : :delete[] to free the memory in your delete
operators, even on the singular delete function. After all, the memory
was allocated by new[], not new. This entire process is hidden from users
of the class.

How It Works

The C++ compiler will automatically call the overloaded functions instead of
the built-in ones.

Comments

The quality and details of the delete[] and new[] operators vary significantly
between compiler vendors. Try running the sample code to see what your
compiler generates. All sample listings here are initially compiled with Borland
C++, and are tested with DIGPP (a GNU compiler for DOS, including a 32-bit
DOS extender). The program leaves the memory statistics in the file

459 py

CHAPTER 12

NEW AND DELETE VERSUS MALLOC() AND FREE()

memstats.txt, and the results vary between even these two compilers. The
following listing shows the memstats. txt file generated by a program compiled
with Borland C++ 5.01A. Notice that the bytes allocated and deleted do not
match, but the calls do.

Memory allocation statistics :
(the numbers below should match)

Bytes Allocated : 600012

Bytes Deleted : 300024
Calls to new : 25001
Calls to new[] : 1

Calls to delete : 25001
Calls to delete[]:1

The following is a memstats. txt file generated by a program compiled with
DJGPP using GCC 2.81:

Memory allocation statistics :
(the numbers below should match)

Bytes Allocated : 600016

Bytes Deleted : 600016
Calls to new : 25001
Calls to new[] : 1

Calls to delete : 25001
Calls to delete[]:1

As you can see by the output of the programs, the compilers used in this
case differed in how they handled the delete operators as well as how they
handled the actual size of the sample_Data class. The difference can be
attributed to byte-alignment settings. The GNU compiler seems to default to
8-byte alignment (which is the fastest for Pentium and later processors) in this
case, and the Borland compiler seems to default to 4-byte alignment.

However, the compilers seem to agree on array sizes, and align them on
8-byte boundaries.

Code Listings for Chapter 12

The following listing, ex1\newdel.cpp, overloads the new and delete operators:

// File: overnew.cpp

// Example for C++ How-To

// Shows how to overload new and delete to implement a simple memory
// statistics keeper.

// Copyright 1998, Jan Walter

// NO WARRANTY. If this code breaks you get to keep both pieces.

// Compiler verificiation:

// Borland C++ 5.01A: Yes
// DJGPP 2.01 w. GCC 2.81 : Yes
// Watcom 10.5: Not Tried

// Microsoft VC++ 5: Not Tried

LB R —
OVERLOAD THE NEW AND DELETE FUNCTIONS FOR ARRAYS

/1 GCC 2.7.2/Linux: Not tried
// GCC/EGCS/Linux: Not tried

#include <iostream.h>
#include <fstream.h>
#include <stddef.h>

#ifdef _ BORLANDC___
#pragma hdrstop
#endif

#include <string>

#include <stdexcept> // standard exception classes

using namespace std ;

//***

/1 Memory statistics class
//***

class MemStats

{
private:
unsigned BytesAllocated ;
unsigned BytesDeleted ;
unsigned CallsToNew ;
unsigned CallsToDel ;
fstream StatsFile;
public:
MemStats() : BytesAllocated (@), BytesDeleted(@), CallsToNew(0),
CallsToDel(0)
{

StatsFile.open("memstats.txt", ios::out) ;
if(!StatsFile)
throw runtime_error("Could not open memstats.txt") ;

}

MemStats(const string& filename) : BytesAllocated(0Q), BytesDeleted(0),
CallsToNew(@), CallsToDel(0)

{
StatsFile.open(filename.c_str() , ios::out) ;
if(!StatsFile)
throw runtime_error("Could not open user-defined file.") ;
}

// these functions can be expanded to do all sorts of other things,
// like print more info into the output file, time and date, etc.

/] or keep track of the allocated chunks of memory in an associative
/] array.

m CHAPTER 12
NEW AND DELETE VERSUS MALLOC() AND FREE()

void newcalled(size_t size)

CallsToNew++ ;
BytesAllocated += size ;
}
void delcalled(size_t size)
{
CallsToDel++ ;
BytesDeleted += size ;
}
~MemStats()
{
StatsFile << endl
<< " Memory allocation statistics : " << endl
<< " (the numbers below should match)" << endl
<< endl
<< " Bytes Allocated : " << BytesAllocated << endl
<< " Bytes Deleted : " << BytesDeleted << endl
<< " Calls to new : " << CallsToNew << endl
<< " Calls to delete : " << CallsToDel << endl
<< endl ;
StatsFile.close() ; // explicitly close file to make
// doubly sure.
}

Y

[REFxE G Kk ko kkkkkkkkkkkokkkkkkkkkkkokkkkkkkokkokkkkkkkkkokkokkkkkkokokohkkok ok ok ok ok

// an interesting side note:

// we cannot easily catch exceptions thrown by the constructor of
// a global object - above the constructor throws a runtime_error
/| exception object if it cannot open the file in the constructor.
// If this is true, the program will abort with some message like
// "abnormal program termination" or "Abort!"

MemStats stats ;

//*********'k****'k****'k***

/1l Sample Data class - nothing special, just an example
//***

class Sample_Data

{

int S_int ;
double S_double ;

public:

Sample_Data() : S_int(0), S_double(0.0)
{1

Sample_Data(int a, double b = 0.0)

LB 463 p
OVERLOAD THE NEW AND DELETE FUNCTIONS FOR ARRAYS

S int = a ;
S_double = b ;
}

Sample_Data(double b, int a = 0)

S_double = b ;
S int = a ;
}
Sample_Data(Sample_Data& copyfrom)
{
S_int = copyfrom.S_int ;
S_double = copyfrom.S_double ;
}
Sample_Data& operator=(const Sample_Data& copyfrom)
{
S_int = copyfrom.S_int ;
S_double = copyfrom.S_double ;
return *this ;
}
Sample_Data& operator++()
{
S_int++ ;
return *this ;
}
void* operator new(size_t size)
{
stats.newcalled(size) ;
return (void*) ::new char[size] ; // allocate specified number of bytes
// with the actual new operator
}
void operator delete(void* mem, size t size)
{
stats.delcalled(size);
::delete[] mem ;
}

// friend functions
friend ostream& operator<<(ostream& s, const Sample_Data& data);

};

//***

ostream& operator<<(ostream& s, const Sample_Data& data)

{
s << data.S_int << ' ' << data.S_double ;
return s ;

m CHAPTER 12
NEW AND DELETE VERSUS MALLOC() AND FREE()

//***

int main(int, char**)
{

const int array_size = 50000 ;

// allocate our sample data
cout << "Size of Sample_Data: " << sizeof(Sample_Data) << endl ;
// declare one object
Sample_Data a(50 , 12.555);

// instantiate an object dynamically
Sample_Data* p = new Sample_Data(21) ;

// declare an array
Sample_Data* DataArray = new Sample_Data[array_size] ;

// declare an array of pointers
Sample_Data* PDataArray[array_size] ;

// initialize the array

for (int 1 = 0 ; i < array_size ; i++)
PDataArray[i] = new Sample_Data(i) ;

// Now work with the data some

DataArray[0] = a ;

for(int i = 1; i < array_size ; i++)

{

DataArray[i] = ++DataArray[i-1] ;
//cout << DataArray[i] << endl ;

+Hp

cout << *p << endl ;

// and clean up dynamically allocated stuff.
delete p ;

delete[] DataArray ;

for (int 1 = 0 ; i < array_size ; i++)

delete PDataArray[i] ;

return 0;

// end of file

12.6

OVERLOAD THE NEW AND DELETE FUNCTIONS FOR ARRAYS

The following listing, ex2\newdel.cpp, is based on the previous listing, but has
been extended to overload the new[] and delete[] operators as well:

// File: overnew.cpp

// Example for C++ How-To

// Shows how to overload new and delete to implement a simple memory

/| statistics keeper. This example also overloads new[] and delete[] operators.
// Copyright 1998, Jan Walter

// NO WARRANTY. If this code breaks you get to keep both pieces.

// Compiler verificiation:

// Borland C++ 5.01A: Yes

// DJGPP 2.01 w. GCC 2.81 : Yes

// Microsoft VC++ 5: Not Tried
// GCC 2.7.2/Linux: Yes

// GCC/EGCS/Linux: Not tried

#include <iostream.h>
#include <fstream.h>
#include <stddef.h>

#ifdef _ BORLANDC___
#pragma hdrstop
#endif

#include <string>
#include <stdexcept> // standard exception classes

using namespace std ;

//***

/1 Memory statistics class
//***

class MemStats

{

private:

unsigned BytesAllocated ;
unsigned BytesDeleted ;
unsigned CallsToNew ;
unsigned CallsToDel ;
unsigned CallsToNewArray ;
unsigned CallsToDelArray ;

fstream StatsFile;
public:
MemStats() : BytesAllocated(0), BytesDeleted(@), CallsToNew(Q),

CallsToDel(@), CallsToNewArray(@), CallsToDelArray(0)

465 p

CHAPTER 12

}

MemStats(const string& filename)

NEW AND DELETE VERSUS MALLOC() AND FREE()

StatsFile.open(

"memstats.txt", ios::out) ;

if(!StatsFile)
throw runtime_error("Could not open memstats.txt") ;

CallsToDelArray(0)

StatsFile.open(filename.c_str() , ios::out) ;
if(!StatsFile)
throw runtime_error("Could not open user-defined file.")

: BytesAllocated (@), BytesDeleted (0
CallsToNew(@), CallsToDel(@), CallsToNewArray(0),

El

these functions can be expanded to do all sorts of other things,
like print more info into the output file, time and date, etc.

or keep track of the allocated chunks of memory in an associative

array.

void newcalled(size_t size)

}

CallsToNew++ ;

3

BytesAllocated += size ;

void newarraycalled(size_t size)

{

}

CallsToNewArray++ ;
BytesAllocated += size ;

void delcalled(size_t size)

{

}

CallsToDel++
BytesDeleted += size ;

’

void delarraycalled(size_t size)

{

}

CallsToDelArray++ ;
BytesDeleted += size ;

~MemStats()

{

StatsFile

<<
<<
<<
<<
<<
<<

<< endl

" Memory allocation statistics : " << endl

" (the numbers below should match)" << endl
endl

" Bytes Allocated : " << BytesAllocated << endl
" Bytes Deleted : " << BytesDeleted << endl

" Calls to new : " << CallsToNew << endl

)5

12.6

OVERLOAD THE NEW AND DELETE FUNCTIONS FOR ARRAYS

<< " Calls to new[] : " << CallsToNewArray << endl
<< " Calls to delete : " << CallsToDel << endl
<< " Calls to delete[]:" << CallsToDelArray << endl
<< endl ;

StatsFile.close() ; // explicitly close file to make

// doubly sure.
}
j

AR AR R AR R R R LR E R EEEE

// an interesting side note:

// we cannot easily catch exceptions thrown by the constructor of
// a global object - above the constructor throws a runtime_error
/| exception object if it cannot open the file in the constructor.
// If this is true, the program will abort with some message like
// "abnormal program termination" or "Abort!"

MemStats stats ;

//***

/1 Sample Data class - nothing special, just an example
//***

class Sample_Data

{

int S_int ;
double S_double ;

public:

Sample_Data() : S_int(0), S_double(0.0)

{1
Sample_Data(int a, double b = 0.0)
{
S_int = a ;
S_double = b ;
}
Sample_Data(double b, int a = 0)
{
S_double = b ;
S_int = a ;
}
Sample_Data(Sample_Data& copyfrom)
{
S_int = copyfrom.S_int ;
S _double = copyfrom.S_double ;
}

Sample_Data& operator=(const Sample_Data& copyfrom)

468

CHAPTER 12

NEW AND DELETE VERSUS MALLOC() AND FREE()

{
S_int = copyfrom.S_int ;
S_double = copyfrom.S_double ;
return *this ;
}
Sample_Data& operator++()
{
S int++ ;
return *this ;
}
void* operator new(size_t size)
{
stats.newcalled(size) ;
return (void*) ::new char[size] ; // allocate specified number of bytes
// with the actual new operator
}
void* operator new[](size_t size)
{
stats.newarraycalled(size) ;
return (void*) ::new char[size] ;
}
void operator delete(void* mem, size t size)
{
stats.delcalled(size);
::delete[] mem ;
}
void operator delete[](void* mem, size_t size)
{
stats.delarraycalled(size) ;
::delete[] mem ;
}

// friend functions
friend ostream& operator<<(ostream& s, const Sample_Data& data);

};

//***

ostream& operator<<(ostream& s, const Sample Data& data)

{

s << data.S_int << ' ' << data.S_double ;
return s ;

}

AR AR AR R R R R AR AL LR EEE LR EEEEEE

int main(int, char**)
{

const int array_size = 25000 ;

LB 469 py
OVERLOAD THE NEW AND DELETE FUNCTIONS FOR ARRAYS

// allocate our sample data

// declare one object
Sample_Data a(50 , 12.555);

// instantiate an object dynamically
Sample_Data* p = new Sample_Data(21) ;

// declare an array
Sample_Data* DataArray = new Sample_Data[array_size] ;

// declare an array of pointers
Sample_Data* PDataArray[array_size] ;

// initialize the array

for (int 1 = 0 ; i < array_size ; i++)
PDataArray[i] = new Sample_Data(i) ;

// Now work with the data some

DataArray[0] = a ;

for(int 1 = 1; i < array_size ; i++)

{
DataArray[i] = ++DataArray[i-1] ;
//cout << DataArray[i] << endl ;
}
+*p

cout << *p << endl ;

// and clean up dynamically allocated stuff.
delete p ;

delete[] DataArray ;

for (int 1 = 0 ; i < array_size ; i++)

delete PDataArray[i] ;

return 0;

// end of file

_ CHAPTER 13
MEMORY

MANAGEMENT

- TECHRNIQU JSIN

s
~ CLASSEs
- eEAYEe

MEMORY
MANAGEMENT
TECHNIQUES USING
CLASSES

How do I...

13.1 Make a simple class to clean up dynamically
allocated memory automatically?

13.2 Make a class that automatically cleans up objects
allocated with new?

13.3 Make an object that deallocates itself when there
IS Nno more code referencing it?

Managing memory is something few programmers think about when designing
a program, but wish they had when staring at debugger output. Although
performance tuning of a program will often deal with memory management
issues, memory management is more than just counting the bytes allocated and
deallocated in a program.

CHAPTER 13

13.1

13.2

13.3

MEMORY MANAGEMENT TECHNIQUES USING CLASSES

Shuffling bytes around in main memory is one of the slowest operations on a
computer, and although it’s faster than accessing the hard disk or the video
memory, things would go much faster if the only thing the processor had to
fetch from main memory was code. Your operating system does a lot of
shuffling of data in memory in its management of caches and other data areas,
as well as handling things like virtual memory (which allows your computer to
use free disk space as an extension to system RAM). This is a relatively fixed
cost, but as a programmer you have control over how your program uses
memory (how much, how often things are copied, and so on).

Another technique no programmer should be without is a basic
understanding of how memory managers are implemented and their limitations.
Easy-to-implement techniques are also covered because for most programs
these produce excellent results with minimal effort.

Make a Simple Class to Clean Up Dynamically
Allocated Memory Automatically

This How-To uses scope to automatically deallocate dynamically allocated
memory. It is most useful in situations in which the new and delete operators
aren’t the most efficient. This allows experimentation with other allocation
schemes, such as operating system API calls, to be done invisibly to the rest of
the program.

Make a Class That Automatically Cleans Up Objects
Allocated with new

This How-To uses a template for type-safe memory management to provide
functionality similar to that of How-To 13.1, it underlines a different approach.

Make an Object That Deallocates Itself When There
Is No More Code Referencing It

Counting the number of references to an object is useful in multithreaded
programming environments because objects might not have finished being
processed by other threads when the thread that allocated the object expires.

TS L 475 p
CLEAN UP DYNAMICALLY ALLOCATED MEMORY AUTOMATICALLY

COMPLEXITY

INTERMEDIATE

13.1 How do I...
Make a simple class to clean up
dynamically allocated memory
automatically?

Problem

You might want to do this for a number of reasons. The primary reason is so
the user of the class does not need to remember to match up new calls with
deletes because the scope mechanism and the class destructor will handle it
automatically. This is not the only reason, though.

Some systems (Windows 3.1, most notably) do not lend themselves well to
the use of new and delete operators (which, for the most part, eventually call
malloc() or free()). Often this problem comes from the memory manager or
the system’s segmentation model. Under the 16-bit Windows operating systems,
most data allocated using new and malloc () comes from the application’s local
heap, which is only 64KB in size. Although more memory can be had using
global memory allocation functions, managing it is quite a hassle.

Operating system direct memory allocation functions are often quite
complicated, with lots of arguments and so on. The use of these functions also
makes porting the code difficult. Another reason might be that the operating
system provides a more robust heap manager (OS/2 provides an extremely fast
memory suballocation manager, for instance).

Encapsulating the process in a memory manager helps the process in a
number of ways:

e |t keeps the actual function calls to the operating system’s memory
allocation routines in one place. This makes porting the code easier
because the memory allocations in the program need not change as long
as the memory allocation object’s interface remains the same.

* It possible to experiment with different memory allocation techniques
(which are not necessarily operating system—specific) without affecting the
code that uses the memory management class.

e |tis easy to keep statistics on the memory the program used.

* The memory-managing object can perform all the error checking, and
even handle the problems in a way best suited to the operating system
without the users’ (that is, the other programmers) of the object knowing
how it's done.

CHAPTER 13

MEMORY MANAGEMENT TECHNIQUES USING CLASSES

« A memory object can perform advanced functions such as reference
counting, providing a copy-on-write scheme, and also calling operating
system—optimized resizing functions to increase program performance
and reliability.

* The memory object can automatically deallocate the memory after the
object falls out of scope. This can reduce the occurrence of memory leaks
tremendously. Just think of what could happen to an application if a
delete call were missed in a function called one million times!

These techniques require some discipline to implement. It is sometimes
difficult to unlearn the use of new and delete for one project, but these
techniques can go a long way toward reducing the amount of debugging time
for a project.

Steps
It is best to start out with code that is generic enough to be used everywhere in
the program. After that, it's possible to use this code in overloaded new and
delete operators, for example. In this example, the code will be modularized
as well as object-oriented. It essentially entails keeping the code specific to
memory management in one C++ file, which is compiled with the other code.
Programmers get the definitions for the classes through a header file. Because
this code is quite generic, placing it in a module makes it easier to reuse
elsewhere.

This example will use only the new and delete functions because they are
available in every C++ system to allow memory to be allocated dynamically that
automatically deallocates itself when the object managing it falls out of scope.
In this case, it will also be possible to implement operators to work on the
memory if this functionality is desired, or, for instance, to set the memory
contents to @ before making it available for use.

There are as many approaches to this problem as there are C++
programmers. The example detailed here will allocate generic memory.

This code is best put into a header file to make it more reusable.

Create a header file to contain the class definition and the inline code for
your class. This example uses memclass.hpp. The .hpp extension denotes
a C++ header file, just to make keeping it apart from the C header files
easier.

Set up defines to prevent the header from being included in a program
more than once. This is vital because this header file might be included in
several other header files that will finally be included in an actual .cpp
file containing code. At best, the compiler will spit out an error message
to the effect of multiple definitions for the same symbol, and at
worst, your program will misbehave.

13.1

CLEAN UP DYNAMICALLY ALLOCATED MEMORY AUTOMATICALLY

Enclosing the contents of your header files in pre-processor directives
similar to the following will prevent errors like multiple definitions
for Or multiple symbols. Make sure to change the names for the
#defines!

#ifndef _ MEMCLASS_HPP

#define _ MEMCLASS_HPP

// header file contents go here ...
#endif

Depending on the amount of allocating and deallocating memory your
programs do, memory management can consume a substantial amount of
your program’s runtime. My advice: Keep it simple and keep it lean.
Statistics are nice, but don't generally have a place in “production quality
code.

The following listing shows a simple pointer management class design to
do this:

class MemPtr

{
private:
void* data ;
unsigned int msize ;
public:
/] constructor list
MemPtr(const unsigned int size) ;
MemPtr(const MemPtr ©from) ;
~MemPtr() ;

// information functions
unsigned int getsize() const { return msize ; }

// the allocated storage is accessed using the
// address of operator (&)

void* operator& () ;
}s

The preceding code is a pretty minimalist implementation, but it’s
relatively easy to extend it to provide for resizing and joining memory
regions, for example.

Implement the shorter functions as inline. | tend to try to inline anything
that's fewer than five statements and is used often in a program. Inlining
functions that are too large tend to make your programs bloated.

Rl —

m CHAPTER 13
MEMORY MANAGEMENT TECHNIQUES USING CLASSES

There is another point: Even if you are inlining functions, it is best to
separate the class member function definitions from their
implementations to make the actual header file more readable. Consider
data-access functions to be an exception if they are only one line. Larger
functions are marked as “inlineable” by using the keyword inline. The
following code snippet shows how implementation of inline functions
goes in the header files from memclass.hpp:

inline

MemPtr::MemPtr(const unsigned int size)

{
msize = size ;
data = new char[size] ;

}

inline
MemPtr: :MemPtr(const MemPtr ©from)
{

// this contructor copies over the data area
msize = copyfrom.msize ;

data = new char[copyfrom.msize] ;

memcpy (data, copyfrom.data, msize) ;

}

inline
void* MemPtr::operator&()

{

return data ;

}

inline
MemPtr::~MemPtr()
{
// with older C++ compilers (those that do not support
// exceptions) it may be necessary to check to see if data is
// NULL before calling delete.
delete[] data ;
}

The core of the class is the overloading of the C++ address-of operator.
Instead of the default behavior of returning the pointer to the actual
object, it returns the pointer to the memory region it manages.

The only other remarkable function is the destructor. Definitions have
changed for the new and delete operators. delete is now smarter in that
it will not deallocate memory that has already been deallocated. In
previous versions, this behavior was undefined. Likewise, new no longer
returns null if it fails, it now throws an xalloc exception. (Refer to
Chapter 11, “Exception Handling in C++,” for a detailed discussion of
exceptions and exception handling.)

13.2

AUTOMATICALLY CLEAN UP OBJECTS ALLOCATED WITH NEW

How It Works

The way this class works is extremely simple. Instead of calling new to allocate
blocks of “raw” memory, a MemPtr object of the size required is declared. The
address-of operator is used to get the pointer address, and then the pointer is
used normally. The only difference is that the memPtr object will delete the
memory when it falls out of scope.

For example, the code

MemPtr hmem(strlen(test_string) + 1);

char* chararray = (char*) &hmem ;

is all that is necessary—the memory will be deleted when hmem falls out of
scope.

The strength of this technique is especially evident when portable code has
to be written because using the new and delete included with the compiler
might not be the most efficient way to do things. Instead of calling the new and
delete operators, the class could call operating system functions, or implement
its own suballocation scheme.

COMPLEXITY

13.2

ADVANCED
How do I...

Make a class that automatically
cleans up objects allocated with
new?

Problem

This is a different spin on the previous How-To. The previous How-To only
allocated raw memory, leaving the host program to typecast the resulting
pointer. The previous How-To is extremely useful if your program must use
memory functions other than new or delete, for example, in 16-bit Windows
programming. This How-To presents a better approach to dealing with objects
allocated with new.

Technique

The Standard Template Library includes a class that is used as a self-managing
pointer. It’s the class | recommend using, but the purpose of this How-To is to
implement our own to explain how it all works.

L 479 p

480

CHAPTER 13

MEMORY MANAGEMENT TECHNIQUES USING CLASSES

In the previous How-To, the memory management class handled the
allocation and deletion of memory. In this case, pointers will be submitted to
objects to manage. This poses a problem: How does the class know if it being
given a pointer to an array of objects, or a pointer to a single object? The truth
is that there is no standard way to figure this out, so for the purpose of this
How-To, the class’s constructors will be made to take an additional, optional
argument to indicate that an array of objects is being managed.

Another problem is one of type safety. Dealing with void* data types is a
potentially hazardous endeavor because they must be typecast to prevent
compiler warnings, and can accidentally be assigned to the wrong data type.
The solution here is to make this a template class.

Steps

Start by creating a header file to contain your class definition. | called the
example classm.hpp, with the file extension denoting that this is a C++
header file.

Define your class. The example uses a template class to provide type
safety in addition to being able to use things such as overloaded
assignment functions internally. The following listing shows the definition
of a memory management class from classm.hpp:

template <class t>
class MemClass

{
private :
t *_data ;
int array ;

public:

MemClass() : array(0) {} ;
MemClass(t *data, int numitems) ;

// this constructor assumes the contained class's assigment
// operator is overloaded.

MemClass(const MemClass<t> ©from) ;

// data access functions

t* GetPtr() { return _data ; }

MemClass<t>& operator=(const MemClass<t>& copyfrom) ;

~MemClass() ;
Y

Note again that even inline functions are not implemented within the
class definition to make this more readable. This is an especially
important point to remember if others have to read your code.

553 RE—
AUTOMATICALLY CLEAN UP OBJECTS ALLOCATED WITH NEW

Implement the constructors and destructor. As a general rule, a copy
constructor should always be defined to prevent little problems from
cropping up. It's possible that some STL or library function might cause
the copy constructor to be called, and in this case, the default would do
exactly what you don’t want it to. The following listing shows the
constructors and destructor for the sample memory management class
from classm.hpp:

template <class t>

inline
MemClass<t>::MemClass(t *data, int numitems = 1)
{
_data = data ;
array = numitems ;
}

template <class t>
MemClass<t>::~MemClass ()

{
if(array ==)
delete _data ;
else
delete[] _data ;
}

template <class t>
MemClass<t>::MemClass(const MemClass<t> ©from)

{
array = copyfrom.array ;

if(copyfrom.array == 1)
{
_data = new t ;
*_data = *copyfrom._data ;

}
else
{
_data = new t[array] ;
for (int 1 = 0; 1 < array ; i++)
_data[i] = copyfrom._data[i] ;
}

}

Note how the class attempts to handle arrays. The class has no way of
finding out (within the scope of the language anyway) whether the
pointer it is given points to an array or to a single object. The second
argument to the constructor allows the user of the class to indicate
whether it is to manage an array.

The array size given needs to be accurate only if you are going to copy the
class with the assignment operator or copy constructor. Otherwise, it is
used only to tell which version of delete to call.

——

CHAPTER 13

MEMORY MANAGEMENT TECHNIQUES USING CLASSES

Implement a data access function. In this case, | chose not to use an
overloaded operator because it is quite possible that the address-of
operator will be used to deal with objects of this class for things such as
function parameters. It is only one line, and so it is implemented in the
class body:

t* GetPtr() { return _data ; }

Implement other functionality for the class. This is really up to the
designer of the class (you). In this case, an assignment operator is
normally very useful, and so this is provided. Plenty of things could also
be added, such as a release function that deletes the contained object,
which can be useful for handling objects that use a large amount of
memory. This listing shows the overloaded assignment operator from
classm.hpp

template <class t>

MemClass<t>& MemClass<t>::operator=(const MemClass<t>
O0& copyfrom)

{
if(©from == this) // deal with possible self-assignment
return *this ;
if (array == 1)
delete _data ;
else if (array > 1)
delete[] _data ;
array = copyfrom.array ;
if(copyfrom.array == 1)
{
_data = new t ;
* data = *copyfrom._data ;
}
else
{
_data = new t[array] ;
for(int i = 0 ; i < array ; i++)
_data[i] = copyfrom._data[i] ;
}
return *this ;
}

Note how self-assignment is handled in this operator. This is critical
because assigning an object to itself is something that could possibly
occur inside a library function, and not handling this possibility could be
disastrous.

13.3

MAKE AN OBJECT THAT DEALLOCATES ITSELF

How It Works

The class essentially assumes ownership of a pointer to a class, and deallocates
it when it falls out of scope. It also deals with one other problem that dealing
with pointers creates: copying pointers by copying the object to which the
pointer points. This eliminates program errors caused by forgetting to delete a
pointer before assigning another value to it.

Comments

The Standard Template Library also includes a class that works like this one,
called auto_ptr.

COMPLEXITY

13.3

ADVANCED
How do I...

Make an object that deallocates
itself when there is no more code
referencing it?

Problem

Programs that do not execute in an absolutely linear fashion can run into
problems when one thread of execution tries to access an object that has
already fallen out of scope in the thread that allocated it.

Operating system callback functions (in which the operating system calls a
specified entry point in a user program, usually asynchronously) have similar
problems to threads in that they might be accessing data deallocated by the
program.

Operating systems provide shared data areas that handle this automatically.
However, these operating system features usually are designed for C, not C++,
so destructors are not called.

Technique

A great number of things relating to how threads share and lock memory are
operating system-dependent. For the purpose of this How-To, code that is
0OS-dependent will be left out and replaced with comments indicating any
issues with the code.

Because this is code that can quickly become complicated, it is critical that
the class is designed (and viewed by the reader to be designed) to solve very
specific problems.

484

CHAPTER 13

MEMORY MANAGEMENT TECHNIQUES USING CLASSES

Specifically, there are some issues specific to both multithreaded
programming and programs that use OS callbacks: Multiple threads can
reference the object at the same time. With OS callback functions, the reference
count might get to zero before the callback function is executed. This means
that handling an OS callback might require special rules for handling the
contained data (such as deleting the contained object the second time the
reference count arrives at zero). On the other hand, whether the callback
function can execute at the same time as other code in the same program is
operating system-dependent. Some (non-preemptive multitasking) operating
systems will only execute a callback while a program is executing an API call to
the system (for example, Windows 3.1 during the GetMessage () API call).

The memory management classes cannot take care of all thread-dependent
issues. Much of the responsibility falls on the actual data that's being handled.
This gives the code the most flexibility because the only rule that could really
be enforced by a container class is to prevent more than one thread from using
the contained data. Implementing this strategy is likely to be less efficient than
letting the data class care for itself. All the container class needs to worry about
is the protection of its own data used to manage the data class.

The sample implementation uses two classes. One object class will contain
the data object (this is called the container object or class throughout this
How-To), and another will abstract data access (referred to as the pointer class
or object). The container keeps the reference count, and that is the actual
number of data access objects currently instantiated. When a data access object
falls out of scope, it notifies the container class of this event.

This technigue is also an excellent candidate for using the C++ template
mechanism to make this code applicable to many situations. This is best
combined with a class library that has support classes that abstract thread
control and management functions (these are usually portable to more than one
operating system, and so make the classes here even more useful).

Steps

As mentioned above, memory management like this can become very
complicated quickly. It requires very careful planning before beginning to
implement the code.

Define the purpose of the memory management code. This is more than
“to manage memory in the program.” It should be specific and concise.
For larger projects, several memory management implementations might
be needed to provide specific behaviors or features required for specific
parts of the program. At that point, consider using inheritance models to
manage common functionality.

13,3 | o; B
MAKE AN OBJECT THAT DEALLOCATES ITSELF

For this How-To, the criteria were as follows:

The container and pointer objects must be content-specific and type
safe. Templates are used to accomplish this.

IEM The container object must clean itself up in addition to the data
object it owns. It will essentially delete itself when it is no longer
referred to.

Criterion B would have disastrous effects if the object or container
were not allocated with new. In the interest of keeping the code
concise, it must be made a rule. Possible approaches that could be
taken in production code are to overload the new operator, to cause
it to set a flag in the container, and to throw an exception from the
constructor if the object was not allocated with new.

B The pointer objects should overload the member-of operator of the
pointer (operator->) to make accessing the members of the
contained object possible.

The object container class should be able to contain arrays of
objects. To keep this How-To as brief as possible, the pointer class
will not support arrays. Adding array support requires overloading
the index-of operator, overloading the addition and subtraction
operators, and maintenance of a pointer to the data within the
pointer class. Its not as complicated as it sounds, but adding all this
will likely cloud the basic techniques presented in this How-To.

The container must protect its own management data, but no more.
Imagine one thread referencing an object while the object was
cleaning itself up because its reference count arrived at zero in
another. The program would have a deadlock at best, and an
outright program crash would be a more likely result.

The container class will control the locking of the count variables
though mutexes. This should allow the control of the restricted
items to be kept in a central few member functions.

MULTITHREADED PROGRAMMING TERMINOLOGY

The multitasking and multithreaded operating system world has
developed some terminology to describe the means to coordinate the
actions of threads and processes, as well as the means of
communicating between them. The general terms used to control
execution in multithreaded programming are detailed in the following
paragraphs.

continued on next page

CHAPTER 13

486 MEMORY MANAGEMENT TECHNIQUES USING CLASSES

continued from previous page

A process is defined as a program running with its own stack and data
space on a computer. Processes are given a specific allocation of
processor time by the host operating system. The scheme by which time
is allocated varies from system to system.

A thread is a “mini process.” All threads share the same data space as
the process that starts them, but have their own stack space. All threads
share the processor time of their process.

A semaphore is a generic term for a variable used to communicate
between processes and/or threads.

A mutual exclusion semaphore (a mutex for short) is a semaphore
intended to ensure only one thread can execute an area covered by the
semaphore at one time. This is usually managed by the operating
system. A program thread locks the semaphore, and while locked, any
other thread attempting to lock the semaphore is blocked from contin-
uing until the other code releases the semaphore. These are normally
used to process data that does not fare well if another thread is
working on it as well. This requires the code to attempt to lock the
semaphore, and the system will not stop the program from working
with the data in question without locking the semaphore. Because of
the discipline required in working with mutexes, it is best to only work
with a particular mutex in one or two sections of code.

Define the layout of the data container class. Depending on the purpose,
it might be more useful to actually store the data object, rather than a
pointer to it. The following code shows the object container class
template (part of memclass.hpp):

template <class t>
class ObjectPtr ;

template <class t>

class ObjectContainer

{
private:
t* _data ;
unsigned int ArraySize ;
unsigned int Refs ;
friend ObjectPtr<t> ;

// for multithreaded environments, also include a mutex handle
// to protect the reference counter and the pointer to data.

public:

ObjectContainer(t* data, int array_size) ;
ObjectContainer(const ObjectContainer<t> ©from) ;

13.3

MAKE AN OBJECT THAT DEALLOCATES ITSELF

ObjectContainer& operator=(const ObjectContainer<t>
0 ©from) ;

/] reference handlers

void reference() ;
void dereference() ;

// inspection functions
unsigned int getrefs() const { return Refs ; }

~ObjectContainer() ;
Y
// end ObjectContainer class definition

Note the forward declaration of the objectPtr template class. This must
be defined in order to allow the ObjectContainer class to have it as a
friend class.

The remainder of the listing implements a memory management class as
implemented in How-To 13.2. The number of references to the object
contained is in the Refs variable.

Fill out the declaration of the pointer class. The class as implemented in
the sample code assumes its pointer to the objectContainer object is
always valid. If you're paranoid, feel free to add code that checks the
validity of the pointer whenever referenced, and perhaps throw an
exception to provide feedback during the debugging cycle. An invalid
pointer could indicate a bug in the reference handling code somewhere.
The following listing shows the filled-out objectPtr class (from
memclass.hpp):

template <class t>

class ObjectPtr
{

ObjectContainer<t> *PointTo ;
public:

ObjectPtr(ObjectContainer<t> *source) ;
ObjectPtr(const ObjectPtr<t> ©from) ;

ObjectPtr<t>& operator=(const ObjectPtr<t> ©from) ;

~ObjectPtr() ;

// data access

t* operator->(){ return PointTo->_data ; }

t& operator* (){ return *(PointTo->_data) ; }

o
// end class definition

488 CHAPTER 13

MEMORY MANAGEMENT TECHNIQUES USING CLASSES

Implement the inline functions. In How-To 13.2, functions that could not
be inlined by the compiler were left in the header file for the sake of
brevity. In this case, the two functions are broken out and put into their
own header file to demonstrate the difference (and to get rid of the
annoying warning messages cannot pre-compile headers ... code
in header that some compilers spit out).

Generally, compilers cannot inline functions that contain loops; there are
other general rules about what compilers can and can't inline, but some
are compiler dependent. Let the compiler worry about whether it can
inline something or not because many things a compiler can (and will, if
you tell it to) inline have a negative performance impact on your
program. Rather, concentrate on making sure code you know should not
be inlined (because of length, generally) is not declared inline. The
following listing shows the inline functions for the objectContainer and
ObjectPtr classes from memclass.hpp:

template <class t>
inline
ObjectContainer<t>::0bjectContainer(t* data, int array_size)
{
_data = data ;
ArraySize = array_size ;
Refs = 0 ;

// these two functions are the core functionality of the code,
// and because they deal with the actual management of the data
// must be protected from other threads

template <class t>
inline
void ObjectContainer<t>::reference()
{
// lock mutex here
Refs++ ;
// and release mutex

}
template <class t>
inline

void ObjectContainer<t>::dereference()

// lock mutex here
Refs--

// copy mutex to local variable

13.3 489

MAKE AN OBJECT THAT DEALLOCATES ITSELF

if(Refs == 0) delete this ;

// release mutex though local variable (this has been
/] destroyed, and so the mutex data member is no longer valid

}

template <class t>
inline
ObjectContainer<t>::~0ObjectContainer()
{
if(ArraySize > 1) delete[] _data ;
else delete _data ;

// now throw an exception if we still have objects referring to
us...
if(Refs) throw logic_error("ObjectContainer destructor
called while \
referenced.") ;

template <class t>
inline
ObjectPtr<t>::0bjectPtr(ObjectContainer<t> *source)
{
source->reference() ;
PointTo = source ;

}

template <class t>

inline

ObjectPtr<t>::0bjectPtr(const ObjectPtr<t> ©from)
{

copyfrom.PointTo->reference() ;
PointTo = copyfrom.PointTo ;

}

template <class t>
inline
ObjectPtr<t>& ObjectPtr<t>::operator=(const ObjectPtr<t>
O ©from)
{
// handle possible self-assignment
if(this == ©from) return *this ;

PointTo->dereference() ;

copyfrom.PointTo->reference() ;
PointTo = copyfrom.PointTo ;

return *this ;

m CHAPTER 13
MEMORY MANAGEMENT TECHNIQUES USING CLASSES

template <class t>
inline
ObjectPtr<t>::~0ObjectPtr()
{
PointTo->dereference() ;

}

The noteworthy items in the code are the reference () and
dereference () member functions. These require mutexes when running
in multithreaded programs to prevent an object from referencing the
object while it is in the process of being deleted.

Implement the out of line functions. Because these are template functions,
they cannot be placed into a separate .cpp module; the compiler will
need them to generate code for programs that use this class. The
following code lists the out of line functions defined in memclass.hpp:

// copy constructor and assignment operator are not inlined,
// and for non-template implementations should be in a

// separate module if used with a compiler that supports

// pre-compiled headers

template <class t>
ObjectContainer<t>::0bjectContainer(ObjectContainer<t>
O ©from)
{
ArraySize = copyfrom.ArraySize ;
Refs = 0 ; // we are making a copy of the contained object
// and therefore have no references.

if(ArraySize > 1)
{
// deal with an array
_data = new t[ArraySize] ;

for(int i

=0 ; 1 < ArraySize ; i++)
_data[i] =

copyfrom._data[i] ;
}
else
{
_data = new t ;
* data = *copyfrom._data ;

}

template <class t>
ObjectContainer<t>& ObjectContainer<t>::operator=

(ObjectContainer<t> ©from)
{

if(this == ©from) return *this ;

13.3

MAKE AN OBJECT THAT DEALLOCATES ITSELF

if(Refs) // error condition: cannot assign to container
// that isbeing referred to
throw logic_error("Tried to assign object container
Owith Refs.");

/] prevent copyfrom from being deleted while we're copying it
copyfrom.reference() ;

if(ArraySize > 1)
delete[] _data ;
else
delete _data ;

ArraySize = copyfrom.ArraySize ;

if (ArraySize > 1)
{

_data = new t[ArraySize] ;

for(int i

=0 ; 1 < ArraySize ; i++)
_data[i] =

copyfrom._data[i] ;
}
else
{
_data
* data

new t ;
*copyfrom._data ;

}
copyfrom.dereference() ;

return *this ;

}

// end of file

Notable items in this file are the calls to reference() and dereference()
in the assignment operator and copy constructor. The object references
the other object while it is working on it to prevent a dereference() call
in another thread from destroying the object while the copying is in
progress.

There is one problem with this code. Can you spot it? (Feel free to skip
the rest of this paragraph until you have played with the code.) The
process of copying can destroy an object with no other references.
Because a newly created object has a reference count of e, referencing and
then dereferencing the object in any way will cause the object to
self-destruct. To fix it, make the copy constructor or assignment operator
grab the mutex that protects the reference count variable, increment
copyfrom. Refs, and free the mutex. Decrement the Refs variable at the
end of the function, remembering the mutexes. This has the effect of
bypassing the self-destruct code in the dereference() function.

m CHAPTER 13
MEMORY MANAGEMENT TECHNIQUES USING CLASSES

I Implement a program to test the classes. This program reads 200 words
from a file (I chose the source file for the test program), and writes them
back to the screen as just words with line wrapping, and then counts the
lines as it goes. This is something | wish every email editor could do with
quoted text. Here is the listing for the test program for our class,
refcount.cpp
// File: refcount.cpp
// A program that uses our reference counting class.

// Copyright 1998, Jan Walter
// NO WARRANTY. If this code breaks you get to keep both pieces.

// Compiler verificiation:

// Borland C++ 5.01A: Yes

// DJGPP 2.01 w. GCC 2.81 : Yes

// Microsoft VC++ 5: Not Tried
// GCC 2.7.2/Linux: Not tried
// GCC/EGCS/Linux: Yes

#include <iostream>
#include <fstream>

#ifdef _ BORLANDC_
#pragma hdrstop
#endif

#include "memclass.hpp"

typedef ObjectContainer<string> StringC ;
typedef ObjectPtr<string> StringP ;

const int numstrings = 200 ;
StringC* stringlist[numstrings] ;

int main(int, char**)

{

ifstream infile("refcount.cpp", ios::in | ios::nocreate) ;

for (int 1 = 0 ; 1 < numstrings ; i++)

{
string temp ;
infile >> temp ; // grab a word from our file
stringlist[i] = new StringC(new string(temp), 1) ;
}

int lines = @, width = 3 ;
cout << (lines + 1) << " :"
for (int 1 = 0 ; 1 < numstrings ; i++)

{

StringP ourstring(stringlist[i]) ;

13.3

MAKE AN OBJECT THAT DEALLOCATES ITSELF

// determine how far along on the line we are ...
width += ourstring->length() + 1 ;
if(width > 75)

{
lines ++ ;

cout << endl << (lines + 1) << " :";

width = (ourstring->length() + 3) ;
}
else

cout << ' '

cout << *ourstring ;

}
cout << endl
<< endl
<< "Statistics: " << endl
<< "Total lines output: " << (lines + 1) << endl ;
return 0;

}
// end of file

The program file shows the use of typedefs to make the use of template
classes a bit easier on the reader and the keyboard. The objects contained
in the renamed ObjectContainer are deleted at the end of the second
for loop, one at a time, as the program traverses the array.

How It Works

The trick with the classes as they are presented is to determine when to count
references. The easiest way to accomplish this is to make a pointer class to
encapsulate pointer functionality.

The pointer objects can be created and fall out of scope ad nauseum, and the
data will be valid until the last pointer object is deleted. At that point, the
container object will self-destruct.

The classes effectively deal with a number of problem areas:

* Automatic cleanup of objects external to the scope in which they are
being accessed (essentially primitive garbage collection).

« With mutexes implemented, provide thread safe access to dynamically
allocated memory.

* Prevent the overwriting of memory currently being referred to elsewhere.
The assignment operator of the objectContainer class will throw a
logic_error exception if this is the case.

m CHAPTER 13
MEMORY MANAGEMENT TECHNIQUES USING CLASSES

Comments

It is possible to accidentally grab a pointer to the data contained that’s not
accounted for through the overloaded operators of the objectPtr class. This is
difficult to prevent. Having said this, it is not likely to happen if the
programmer using the class understands the implications of the code. After all,
it is possible to access private data members of classes from outside a class, too
(by typecasting the object to an array of char, and then reading it as an array).

Also, the data object being encapsulated within the objectContainer might
need mutex protection for the data it contains. Because this is a data issue, |
recommend that the data class handle this and not the container class.

PART VI

/O

— CHAPTER 14
UNDERSTANDING THE

/O STREAMS LIBRARY

UNDERSTANDING THE
/O STREAMS LIBRARY

How do I...

14.1 Use the C Standard 1I/O Library with the C++ 1/O
streams library?

14.2 Make my own classes compatible with cin and
cout?

14.3 Perform complex formatting with cout or another
ostream object?

14.4 Make my own stream manipulators?

So many programmers have difficulty with the C++ I/O streams library that it is
quite common to see C++ code still using old C stdio functions to handle
program 1/O. Although some programmers might consider this approach
practical, or even superior, the C stdio library does not do much to help good
programming practice or catch oversights made by the programmer.

Consider the following points:

e The C++ 1/O streams library implements type checking, whereas the
stdio library's 1/0O is primarily done through void pointers.

e The C++ I/O streams library uses overloaded functions to make handling
all built-in data types simple and identical.

CHAPTER 14

14.1

14.2

14.3

14.4

UNDERSTANDING THE I/O STREAMS LIBRARY

* |tis easy to extend the 1/O streams library to allow the input and output
operators to operate on user-defined classes.

Use the C Standard 1/O Library with the C++ I/O
Streams Library

At some time, every C++ programmer will have to work with existing C code or
very old C++, and either integrate this code with new C++ code or use libraries
that contain C-style 1/0. Some issues regarding this are discussed in this
How-To.

Make My Own Classes Compatible with cin and
cout

This How-To shows the technique for overloading the stream insertion and
extraction operators.

Perform Complex Formatting with cout or Another
ostream Object

Basic output with cout might not always produce the desired results. Another
header file contains advanced stream manipulators that can provide additional
output formatting options.

Make My Own Stream Manipulators

It is often inconvenient to repeatedly use the in-stream formatting manipulators.
This How-To demonstrates how to create an in-stream manipulator to combine
the effects of several pre-defined manipulators.

COMPLEXITY

14.1

INTERMEDIATE
How do I...

Use the C Standard I/O Library
with the C++ I/O streams library?

Problem

Using both the C Standard 1/O Library and the C++ 1/O streams library is a bad
idea, and should be avoided whenever possible because the problems that can
occur are difficult to diagnose. However, there are reasons you might want to
use both libraries:

e To use or maintain existing C code with C++

W T
USE C STANDARD 1/0 LIBRARY WITH C++ I/O STREAMS LIBRARY

e To use a prewritten C library with your C++ programs

The point is that you should only employ this technique if there is no other
way, and if the program is experiencing irregular problems related to 1/0.

The problem with using both libraries for 1/0 is that both libraries allocate
their own buffers to increase the performance of 1/0. Buffering also implies
there is no guarantee that output will occur during the printf() or
cout.write() call. It is likely to happen sometime afterward, when the buffer
has been filled completely with other data to write. If you have two buffering
systems, they will likely fill at different times, and output will appear out of
order unless the buffers are synchronized.

This technique incurs a fairly high price for compatibility with old C code.
File operations, such as writing and seeking, begin to incur a significant
performance penalty because the output stream has to check continuously
whether it's synchronized with the C library’s buffers.

Also, the latest GNU development system's stdio implementation in the
libio library on Linux and other UNIX-like operating systems is inherently
compatible with GNU' 10Streams implementation. On GNU systems, this
technique is unnecessary unless complete code compatibility between the GNU
and other systems is desired.

NOTE

The GNU project, started by the Free Software Foundation, creates free
software (now called “Open Source Software”) for use by everyone, and
all GNU projects make the source code available for anyone to modify.
Systems like Linux, as well as a number of C and C++ development
tools, are fruits of the Open Source movement. GNU stands for “GNU’s
Not UNIX.” You can find out more about the GNU project at
http://www.gnu.org.

Technique

For each 10Streams base class, call its inherited sync_with_stdio() function.
It is possible to turn synchronization off again by passing @ as the argument to
the function. Incidentally, the default argument is 1, meaning to turn on
compatibility.

WARNING

Each class based on 10Streams must execute this call individually to
ensure it is synchronized with the Stdio library.

CHAPTER 14

UNDERSTANDING THE I/O STREAMS LIBRARY

Steps

Identify each class that is based on either istream or ostream by using a
class viewer or the utility grep. Consult your development environment
documentation if you're not sure how to do this.

S

Determine whether the class performs any file 1/0 (note that output and
input from stdout and stdin are also file 1/0).

3

After each class is identified, the class’s constructor is the best place to
implement this for each class in a way that it is not left out. If that is not
possible—for instance, if the class is to be employed in situations in
which this technique is not necessary or if you don't have access to the
source code—add a call to the class’s sync_with_stdio() after each class
is instantiated.

Comments

Depending on how the classes are instantiated in your program, it might be
possible to wrap the instantiation into a macro to ensure that the function is
added for every class.

Macros are leftovers from the C language, but still have some usefulness in
this case. To review this quickly, macros have no type checking at all. Therefore,
one needs a great deal of discipline to get macros to work in a production
environment.

A macro like this would instantiate a class, and call its sync_with_stdio()
function. Its not possible to restrict the macro to iostreams classes only.

#define SYNCED_IOSTREAM_CLASS(classname, varname) \
classname varname ; \
varname.sync_with_stdio()

Note that the last comma is not there. Most programmers put one there by
habit, and the designer (me, in this case) figured that it would be best to leave
that habit in place. The compiler will generate an error if the semicolon is left
out when the macro is used in code.

The preceding example does not take into account any arguments that must
be passed to the stream constructor. In your code, this macro would be used
like this:

// Code above
SYNCED_IOSTREAM_CLASS(ostream, myOstream) ;
// code below

If the source library with the class can be edited, it might be worthwhile to
make the code optional, or allow it to be enabled by using a #define statement.

S B
MAKE MY OWN CLASSES COMPATIBLE WITH CIN AND couT

COMPLEXITY
INTERMEDIATE

14.2 How do I...
Make my own classes compatible
with cin and cout?

Problem
It would substantially simplify code to use the istream and ostream operators
>> and << to perform the custom output, rather than to individually output the
public data members each time, or to output protected and private members via
member access functions.

Technique
After a class is made compatible with the standard istream and ostream
classes, 1/0 for the class will be much more consistent. The best way is to
overload the << or >> operators for your class.

The extraction and insertion operators for C++ take the following format:
For output:

ostream& operator<<
(ostream& outstream, <insert your data type here>& data)

For input:

istream& operator>>
(istream& instream, <insert your data type here>& data)

The code in these functions is dependent on the contents of your data type.
For classes, it might be necessary to declare the function a friend of the class to
allow it access to private and protected data members.

Steps

Determine the best way to get data into or out of your class—either by
the friend declaration or some other means, such as an overloaded =
operator.

Create the declaration of the function. Be sure the iostream.h header file
is included before the declaration, or the ostream or istream data types
will not be visible and result in a compile-time error.

The easy way is to make the overloaded operators for your class friends to
your class if you have to handle protected or private data members.
However, this is not recommended because it circumvents any validity

CHAPTER 14

UNDERSTANDING THE I/O STREAMS LIBRARY

checking imposed by the functions that would validate this input. With
some modifications, it is possible to make this reasonably safe, but the
safest (the fewest possible side-effects) way is to not use the friend
mechanism unless you absolutely have to.

You can use the following code as a template (it's taken from the
iostreams\ex3 directory on the CD-ROM):

istream& operator>>(istream&, RowProcessor&);
ostream& operator<<(ostream&, RowProcessor&);

Handle the data input and output. When processing is finished, return
the istream or ostream object.

How It Works

Using the operator overloading mechanism, the C++ streams libraries “chain”
what are in essence procedure calls for stream operations. Because the
overloading mechanism depends entirely on the argument types passed to a
function, this system is easily extendable for user-defined types.

Comments

Because file handling in the streams library is also based on the same
mechanism, extending a class for console 1/0 will automatically support
streaming to files and character arrays as well.

COMPLEXITY

ADVANCED

14.3 How do I...
Perform complex formatting with
cout or another ostream object?
Problem

Although formatting with C++ is simpler than formatting with the printf
family of functions from the C stdio library, it still has its pitfalls. On some
systems, a lot of in-stream formatting needs to have an additional header file
included to give access to the additional member functions used to perform
advanced formatting.

14.3

PERFORM FORMATTING WITH couT OR ANOTHER O0STREAM OBJECT

Technique

In-stream formatting operators tend to be underrated, and unlike the printf
series of functions, are type-safe and easily extended to fit the needs of your
programs. Although some of the functionality is visible with the stock header
file, iostream.h, most of the functionality of the stream modifiers is in
iomanip.h.

Extending the system with your own manipulators is rather easy as well, and
will be covered later. Normally, they will work with string-based and file-based
streams as well.

The predefined manipulator library is by no means complete, however, and
only encompasses some of the actual functionality included in the streams
classes. Additional functionality can be accessed through each stream’s setf ()
function and by passing the appropriate constant to it.

Standard Manipulators

Explaining standard manipulators is best done with a sample program. There
are many possibilities for combining standard manipulators, and others might
have been added in your development environment that are specific to your
compiler vendor. Check your documentation for any of the nonstandard
manipulators.

Setting Output Width with setw()

The setw() manipulator takes an integer argument and defines the default
width of each item given to the output stream. The manipulator is in effect until
changed again, and setting it to @ will reset it to defaults. Using this
manipulator will not cause output to be truncated; if the width of the item sent
into the stream is wider than the given setw() value, the width of the item will
determine the space given to the item.

The code

cout << "double d1 = " << setw(9) << di << ',' << endl ;

will cause the value to be shown in a field exactly nine characters wide. The
following file, setw.cpp, demonstrates application for the setw manipulator;

// File: setw.cpp

// Example for C++ How-To

// Example file 1 for using io manipulators

// Using setw to set output width

// Copyright 1998, Jan Walter

// NO WARRANTY. If this code breaks you get to keep both pieces.

505 py

m CHAPTER 14
UNDERSTANDING THE I/O STREAMS LIBRARY

// Compiler verificiation:

// Borland C++ 5.01A: Yes

// DJGPP 2.01 w. GCC 2.81 : Yes

// Watcom 10.5: Not Tried
// Microsoft VC++ 5: Not Tried
// GCC 2.7.2/Linux: Not tried
// GCC/EGCS/Linux: Not tried

#include <iostream.h>
#include <iomanip.h>

#ifdef _ BORLANDC_
#pragma hdrstop

#endif

int main()

{
// the names are not the best -sorry
double di, d2;
int i1, i2;

// note that there are functions to do both of these in the math.h
// library, but since this is so simple this is easier to do.

dl1 =22.0 / 7.0 ; // this approximates pi
d2 = d1t * di ;

i1 = di * 100 ;
i2 = d2 * 1000 ;

// Using setwidth()

cout << endl
<< "Using the setw() example:" << endl
<< endl
<< "Numbers before setw():" << endl
<< "double d1 = " << df << '.' << endl
<< "double d2 = " << d2 << '.' << endl
<< "int i1 = " << il << '.' << endl
// note the spaces align things here.
<< "int i2 = " << i2 << '.' << endl
<< endl

<< "Note how the output looks after using setw(9):" << endl

// setw does not need to be called every time, it's just
// this way for clarity.

<< "double d1 = " << setw(9) << di1 << '.' << endl
<< "double d2 = " << setw(9) << d2 << '.' << endl
<< "int it = " << setw(9) << i1 << '.' << endl

ot I
PERFORM FORMATTING WITH couT OR ANOTHER O0STREAM OBJECT

<< "int i2 = " << setw(9) << i2 << '.' << endl

<< endl
<< "Note how the numbers by default are right-aligned, and text" << endl
<< "is left-aligned." << endl;

// wait for keypress routine to prevent os windows from closing when the
// program has completed.

// non-dos (or Windows or 0S/2) platforms use the '\r' char
// for the enter key. Sorry, no Mac definition here. You'll have to experiment.

cout << endl << "Press enter key to continue ..." << endl;
int ci;

while(cin && (c1 = cin.get()) != '\n') ;

return 0;

// end of file

Setting the Whitespace Character with
setfill()

The setfill() manipulator selects what the stream considers to be whitespace.
By default, this is the space (“ “) character, and can be changed to suit the
application’s needs. Check-printing routines would normally use the * char-
acter, for instance. This setting stays in effect until changed again by another
call to setfill().

The following code (given that i2 has a value of 10250)

cout << "int i2 = " << setw(11) << setfill('*')<< i2 << ',' << endl;

will produce output that looks like this:
int 12 =*****%10250.

Setting the Number of Decimal Points with
setprecision()

The setprecision() modifier affects only floating-point numbers such as
float and double types. It sets the number of digits of precision used when
displaying the number, and stays in effect until changed again. Note that the
behavior is as expected—the decimal point is not counted as a digit when the
output stream calculates the precision.

For example, if the double d1 had a value of 44.123456789, the code

cout << setprecision(9)
<< "double di = " << setw(11) << setfill('*') << di1 << '.' << endl

3

CHAPTER 14

UNDERSTANDING THE I/O STREAMS LIBRARY

would print like this on the screen:

double d1 = **44.1234568.

Whether the last number rounds up depends somewhat on your compiler’s
iostreams implementation, and could possibly be affected by other precision-
related rules because this is a double-precision floating-point number. The
following file, precisn.cpp, demonstrates the uses of setfill and
setprecision I/O manipulators:

File: precisn.cpp

Example for C++ How-To

This file demonstrates the setprecision and setfill io manipulators.
Copyright 1998, Jan Walter

NO WARRANTY. If this code breaks you get to keep both pieces.

Compiler verificiation:

Borland C++ 5.01A: Yes

DJGPP 2.01 w. GCC 2.81 : Yes

Watcom 10.5: Not Tried
Microsoft VC++ 5: Not Tried
GCC 2.7.2/Linux: Not tried
GCC/EGCS/Linux: Not tried

#include <iostream.h>
#include <iomanip.h>

#ifdef _ BORLANDC_
#pragma hdrstop

#endif

int main()

{
double d1, d2;
int i1, i2;

/1

// note that there are functions to do both of these in the math.h
// library, but since this is so simple this is easier to do.

dl =22.0 / 7.0 ; // this approximates pi
d2 = d1t * di ;

i1 = di * 100 ;
i2 = d2 * 1000 ;

Using setprecision()
cout << endl

<< "The setprecision() call affects all floating point" << endl
<< "output after the call. The default precision is 6." << endl

14.3

PERFORM FORMATTING WITH couT OR ANOTHER O0STREAM OBJECT

<< "Also note that setprecision does not include the decimal" << endl
<< "point in the precision." << endl
<< setprecision(9)

<< "double d1 = " << setw(11) << setfill('*') << d1 << '.' << endl
<< "double d2 = " << setw(11) << setfill('*')<< d2 << '.' << endl
<< "int i1 = " << setw(11) << setfill('*')<< i1 << ',' << endl

<< "int i2 " << setw(11) << setfill('*')<< i2 << '.' << endl;

// wait for keypress routine to prevent os windows from closing when the
// program has completed.

// non-dos (or Windows or 0S/2) platforms use the '\r' char
// for the enter key. Sorry, no Mac definition here. You'll have to experiment.

cout << endl << "Press enter key to continue ..." << endl;
int ci;
while(cin && (c1 = cin.get()) != '\n') ;

return 0;

// end of file

Conversion Bases

Conversion bases cause numerical output to be given in something other than
decimal. Octal and hexadecimal output are most commonly used for debug
messages and other computer- or system-related output.

For incoming data, the manipulator tells its stream what type of numerical
data to expect by default. Base prefixes, such as the ex prefix, are normally used
to determine the base of the number. On some platforms, such as some older
UNIX compilers, prefixing the input number with something like a ox will
cause the stream to read only the first number (that's the @), and leave the rest
in the stream.

For instance, the following code will read an octal number from the user and
write it back to the screen:

cout << endl
<< "Enter an octal number: ";
cin >> oct >> i2;
cout << endl
<< "The number was: " << oct << i2 << " Base 10: " << dec << i2 << endl;

Note that unlike the modifiers in the previous examples, these do not take
any arguments. The following file, setbase.cpp, shows how to use some of the
manipulators used to set the base of the number read:

// File: setbase.cpp
// Example for C++ How-To
// This program demonstrates IO using base manipulators.

509 py

CHAPTER 14

UNDERSTANDING THE I/O STREAMS LIBRARY

Copyright 1998, Jan Walter
NO WARRANTY. If this code breaks you get to keep both pieces.

Compiler verificiation:

Borland C++ 5.01A: Yes

DJGPP 2.01 w. GCC 2.81 : Yes

Watcom 10.5: Not Tried
Microsoft VC++ 5: Not Tried
GCC 2.7.2/Linux: Not tried
GCC/EGCS/Linux: Not tried

#include <iostream.h>
#include <iomanip.h>

#ifdef _ BORLANDC_
#pragma hdrstop
#endif

int main ()

{

double d1, d2;
int i1, i2;

// note that there are functions to do both of these in the math.h
// library, but since this is so simple this is easier to do.

dl =22.0 / 7.0 ; // this approximates pi
d2 = d1 * di ;

i1 = di * 100 ;
i2 = d2 * 1000 ;

// Setting the base for reading and writing numbers

cout << endl
<< "Using the base modifiers affects all integers inserted" << endl
<< "into the stream from that point onwards, like" << endl
<< "setprecision() does for floating point numbers." << endl

<< "double d1 = " << setw(11) << setfill('*') << d1 << '.,' << endl

<< "double d2 = " << setw(11) << setfill('*')<< d2 << '.' << endl

<< "int i1 = " << setw(11) << setfill('*') << i1 << '.' << endl

<< "int i1 as hexadecimal = " << setw(11) << hex << it << '.' << endl
<< "ipt 12 = " << setw(11) << dec << 12 << ',' << endl;

// demonstrate input - different compiler systems' iostreams
// classes handle this somewhat differently

cout << endl

<< "Enter an octal number: ";
cin >> oct >> i2;
cout << endl

<< "The number was: " << oct << i2 << " Base 10: " << dec << i2 << endl;

14.3

PERFORM FORMATTING WITH couT OR ANOTHER O0STREAM OBJECT

cin.ignore(3, '\n'); // gets rid of any left over newlines in the input
// stream

// wait for keypress routine to prevent os windows from closing when the
// program has completed.

// non-dos (or Windows or 0S/2) platforms use the '\r' char
// for the enter key. Sorry, no Mac definition here. You'll have to experiment.

cout << endl << "Press enter key to continue ..." << endl;
int ci;
while(cin && (c1 = cin.get()) != '\n') ;

return 0;

// end of file

Manipulations Using setf ()

Although the other manipulators are inline, that is, placed between <<
operators, the modifications done using setf () and unsetf () are performed
using these member functions to the stream object.

Good programming practice dictates that all flags should be unset after the
output is completed because other routines, possibly in other people’s code,
might assume the flags to be left as defaults.

Alignment

Although on some systems it is possible to set the alignment of text in a field
defined with setw(), this is not guaranteed to work on all compilers. It is
confirmed not to work with the GNU and DJGPP iostreams libraries, which
are essentially the same. Alignment of numbers is what the alignment setting
was intended for, and it is likely that most library authors will only support
this. Borland's implementation is the notable exception to this case.

The call to set right alignment (which is the default) is shown for the cout
class:

cout.setf(ios::right)
and

cout.setf(ios::left)

to set numbers to left align in their fields, just as text is by default.

Showing Positive Numbers with a + Sign

By default, only negative numbers are prefixed with a - on output to indicate
they are negative numbers. If desired, this flag can be set to cause the system to
mark positive numbers with a + also.

CHAPTER 14

UNDERSTANDING THE I/O STREAMS LIBRARY

To get the system to denote positive numbers, use a call like this:

cout.setf(ios::showpos)

Showing Floating-Point Numbers in Scientific
Notation

Scientific notation as displayed on a computer screen is not exactly the way
humans would write it on paper—most systems lack superscript, for example.
Instead, the significant digits are shown, and then usually a lowercase e, and a
positive or negative exponent sign. This is particularly useful for showing
numbers with most of their significant digits more than six places away from
the decimal point by reducing the amount of space used when printing the
numbers on the console.

To set the output class to use scientific notation to output floating-point
numbers, use the call

cout.setf(ios::scientific) ;

Following is the code listing for setf.cpp, from the CD-ROM. The code
demonstrates some common uses of the setf () member function of the
ostream classes (such as cout and the file streams) and shows some common
setf() calls and their effects.

File: setf.cpp

Example for C++ How-To

This program demonstrates using the setf() and unsetf() member functions
with the iostreams classes.

Copyright 1998, Jan Walter

NO WARRANTY. If this code breaks you get to keep both pieces.

Compiler verificiation:

Borland C++ 5.01A: Yes

DJGPP 2.01 w. GCC 2.81 : Yes - right align text does not work
Watcom 10.5: Not Tried

Microsoft VC++ 5: Not Tried

GCC 2.7.2/Linux: Yes - right align text does not work
GCC/EGCS/Linux: Yes - right align text does not work

#include <iostream.h>
#include <iomanip.h>

#ifdef _ BORLANDC_
#pragma hdrstop
#endif

#include <string> // string includes code with some libraries

// this prevents precomiled headers from
// being used, and slower compilations.

using namespace std ;

14.3

Il

PERFORM FORMATTING WITH couT OR ANOTHER O0STREAM OBJECT

int main ()

{

double d1, d2;
int i1, i2;
string s1, s2;

// note that there are functions to do both of these in the math.h
// library, but since this is so simple this is easier to do.
di = 22.0 / 7.0 ; // this approximates pi

d2 = d1 * 1000 ;

i1 = di * 100 ;
i2 = d2 * 1000 ;

// setting text or number alignment
s1 = "This text is right aligned.";

cout.setf(ios::right);
cout << endl
<< "Width will be set to: " << (s1.size() + 10) << endl
<< setw(sl.size() + 10) << si
<< setw(Q) << "." << endl ;

// unset the right-alignment flag
cout.unsetf(ios::right) ;
s2 = "This text is left aligned.";
cout << endl
<< setw(s2.size() + 10) << setfill('x') << s2 << endl
<< endl << setw(0Q) << setfill(0Q)
<< setw(10) << i2 << setw(0@) << endl ;

// Showing the base of a number on output.

cout.setf(ios::showbase) ;

cout << endl
<< "Using setf(ios::showbase) for numeric output:" << endl
<< "if1 as basel0: " << i1 << " Octal: " << oct << i1 << dec << endl
<< "i2 as base10: " << i2 << " Hex: " << hex << 12 << dec << endl;

/] reset the flag
cout.unsetf(ios::showbase) ;

/1 show positive sign

cout.setf(ios::showpos) ;

cout << endl
<< "Using setf(ios::showpos) for numeric output:" << endl
<< "i1 as base1@: " << i1 << " Octal: " << oct << i1 << dec << endl

<< "i2 as basel0: " << i2 << " Hex: " << hex << i2 << dec << endl;

CHAPTER 14

Il
/1l

/1

UNDERSTANDING THE I/O STREAMS LIBRARY

cout.unsetf(ios::showpos) ;
// using scientific notation for floating point output

cout.setf(ios::scientific) ;
cout << endl
<< "Using setf(ios::scientific) to produce scientific" << endl
<< "notation floating point output." << endl
<< "d1 in scientific notation: " << d1 << endl
<< "d2 in scientific notation: " << d2 << endl;

cout.unsetf(ios::scientific) ;

wait for keypress routine to prevent os windows from closing when the
program has completed.

non-dos (or Windows or 0S/2) platforms use the '\r' char

for the enter key. Sorry, no Mac definition here. You'll have to experiment.
cout << endl << "Press enter key to continue ..." << endl;

int ci;

while(cin && (c1 = cin.get()) != '"\n') ;

return 0;

end of file

Steps
In order to use /O manipulators, include iomanip.h in your source file or
common header file. The individual steps depend on the intended format of
output.

Its important that you leave your output streams in the default state when
your code is finished. This might not matter in the simple examples shown
here, but it will come back to bite you if you have to work in conjunction with
other programmers or use other people’s code.

How It Works

Stream manipulators take a stream reference and possibly some other
arguments, perform processing or output into the stream, and then return the
stream reference. This has the effect of allowing stream operations to be chained
onto each other. In reality, the compiler sees this as a set of nested function
calls, rather than a chain of events.

14.4

MAKE MY OWN STREAM MANIPULATORS

Comments

Probably the most important point is to remember to reset any manipulators
you change. Code that comes after yours, either in your functions, library
functions, or third-party code, might depend on the flags being set to the
defaults. Short programs probably make an exception here, if resetting
everything could make up a significant percentage of the lines in the program.

COMPLEXITY

14.4

ADVANCED
How do I...

Make my own stream
manipulators?

Problem

Often a specific series of manipulations to the input or output streams is
required to be repeated in a program. While this can be accomplished using a
regular function (by passing the stream by reference and performing the
manipulations there), it is much more convenient to actually write a
manipulator. This can be worked into the insertion or extraction operation with
a minimum of fuss.

Technique

The technique is similar to overloading the stream insertion and extraction
operators—all manipulators take a stream reference as the first argument and
return a stream reference. All operations normally done on streams are valid,
and it is possible to add characters and other data to the stream as well as
manipulate the stream properties themselves.

Remember that stream manipulators do have lasting effects, and it is
good practice to return the stream to its original state when all
operations are complete. This is especially important if the work your
code is doing is in a function and part of a larger project—you could
affect other programmers’ work (or your own) in adverse ways.

The best approach is to have one modify the stream, and another
manipulator undo the modifications.

CHAPTER 14

Steps

UNDERSTANDING THE I/O STREAMS LIBRARY

Determine the operations necessary on the stream to get the data into or
out of the stream in the way you want.

Create a function taking a stream (input or output, depending on the
operation) as a reference argument, and returning one.

ostream& setfmt(ostream& output)

In that function, perform all the modifications that need to be done—that
is, setting widths, precision, numerical base, and adding any characters or
other data to the stream.

ostream& setfmt(ostream& output)

{
output << setw(9) ;
output.setf(ios:: right) ;

return output ;

}

Create another function to undo the modifications to the stream. This is
not necessary if all that happened was that the manipulator inserted some
formatting characters into the stream (tabs, dollar signs, or ANSI control
sequences).

ostream& unsetfmt(ostream& output)

{
output << setw(0) ;
output.unsetf(ios:: right) ;
output << " degrees." ;

return output ;

}

Use the manipulator and the unmanipulator in your code:

0s << setfmt << write.val() << unsetfmt ;

How It Works

Stream operations get their relatively easy-to-learn syntax from the fact that they
return stream objects themselves (whose functions can be called, and so on).
Manipulators use this syntax too, and that makes it possible to easily hook in
in-stream formatting style manipulators when convenient.

The advantages of this technique are

Reduced chance of formatting errors because some stream manipulator
was left out or was not unset.

14.4

MAKE MY OWN STREAM MANIPULATORS

e Easier-to-understand syntax to the reader or maintainer of the program,
provided the manipulators are aptly named.

= More consistent formatting—to change the input or output style of the
data, only one function needs to be changed.

The following code listing, usrmanip.cpp, shows how to use
non-parameterized manipulators:
File: usrmanip.cpp
Example for C++ How-To
Writing your own stream manipulators
Copyright 1998, Jan Walter
NO WARRANTY. If this code breaks you get to keep both pieces.

Compiler verificiation:

Borland C++ 5.01A: Yes

DJGPP 2.01 w. GCC 2.81 : Yes

Watcom 10.5: Not Tried
Microsoft VC++ 5: Not Tried
GCC 2.7.2/Linux: Not tried
GCC/EGCS/Linux: Not tried

This sample program details how to write your own streams manipulators.
While it is only possible to write manipulators that don't take parameters
without modifying the actual streams source code (which is beyond the
scope of this book), the advantages of having only one function to set

a stream to the way it's needed (and another to return it to its original
state) are many: it's easier, more clearer for others to understand, and
less likely to result in program bugs or undesired behavior.

In this example we will use non-parameterized IO manipulators to set the
width of numerical output and the alignment of numerical output in one
operation. This technique can be combined with overloaded insertion and
extraction operators to make code more readable and less susceptible to
oversights (i.e. bugs and side effects).

What the program itself does:

This program reads standard input for numbers as fractions, numerator and
then denominator, interpreted as fractions of the angle of full circle
(i.e. 360 degrees) and converts those to the angle in degrees. For example,
25 100 (meaning the fraction of 25 over 100) would be 90 degrees.

The best way to feed data to a program of this type is to put all of the
numbers into a text file, and then redirect the file into the program's
standard input using the operating system shell's redirection symbol.
i.e. usrmanip < angles.txt

If you choose to enter fractions manually, the letter Ctrl-Z is the
end-of-file character and will denote to the program that you're finished
entering data.

m CHAPTER 14
UNDERSTANDING THE I/O STREAMS LIBRARY

#include <iostream.h>
#include <iomanip.h>

#ifdef _ BORLANDC___

#pragma hdrstop

#endif

#include <string>

// The program will define 2 manipulators - one that configures the stream

// to the way we want it for output, and the other one to append some text and

// set it back to the way it was.

ostream& setfmt(ostream& output)

{
output << setw(9) ;
output.setf(ios:: right) ;
return output ;
}
ostream& unsetfmt(ostream& output)
{
output << setw(0) ;
output.unsetf(ios:: right) ;
output << " degrees." ;
return output ;
}

// the class degree abstracts the io and error handling for the reading,
// writing, and calculations of this program.

// degrees in a full circle.
const double maxdegrees = 360 ;

class degree

{
private:
double numerator ;
double denominator ;
public:

// constructors: the default constructor, an initialized constructor,
// and a copy constructor

degree() : numerator(@), denominator(0)

{}

14.4

I

MAKE MY OWN STREAM MANIPULATORS

degree(double num, double dem)

{
numerator = num ;
denominator = dem ;

// technically, a copy constructor is not required in this case, since

// compilers will generate a memberwise copy constructor in cases like this.
// However, anytime arrays are involved, a copy constructor must be defined,
// since assignment of one array to another actually only copies the address
// of the array, and not the contents. Then it becomes a race to see which
// instance of the class deallocates the memory for the array first - the

// second time the now invalid array gets deallocated the operating system
// will terminate the program with a GPF (Windows, Win32, 0S/2) or a

// segmentation fault (UNIX, Linux).

// This being said, it's good practice to include one anyway.
degree (degree& copyfrom)

{

numerator = copyfrom.numerator ;
denominator = copyfrom.denominator ;

}

// overloaded assignment operator
degree& operator=(const degree& copyfrom)

{
numerator = copyfrom.numerator ;
denominator = copyfrom.denominator ;
return *this ;
}
// validity operator ! - dividing by zero is an illegal operation from the

// computer's point of view, so we check for this possibility using the
// NOT operator

bool operator! () const
{
if(denominator == 0.0) return true ;
return false ;

}

// this returns the actual degrees
double val() const

{
if(!*this) // check to see if our data is valid
return 0.0 ;
return numerator / denominator * maxdegrees ;
}

// overloaded stream extraction and insertion operators

m CHAPTER 14
UNDERSTANDING THE I/O STREAMS LIBRARY

istream& operator>>(istream& is, degree& read)

{
double a, b ;
is >> a >> b ;
read = degree(a, b);
return is ;
}

// decision time: we could put the io manipulators into the output stream
// instead, if we wanted to.

ostream& operator<<(ostream& os, const degree& write)

{
if(!write) // data is not valid
0s << "Error!"
else
0s << setfmt << write.val() << unsetfmt ;
return os ;
}

// the main function actually does the IO handling and printing of the
// copyright.

int main(int, char**)

{
// the cerr output stream does not get redirected by default,
// so it's used to print messages that have to make it though to the user
cerr << " Fraction to angle calculator." << endl
<< " (c¢) Jan Walter, 1998. NO WARRANTY." << endl ;
degree mydegree ;
int count =1 ;
cin >> mydegree ;
while(cin)
{
cout << " Reading " << count++ << " @ " << mydegree << endl ;
cin >> mydegree ;
}
}

// end of file

14.4

MAKE MY OWN STREAM MANIPULATORS

Comments

Using custom 1/0 manipulators can make code more readable, more
trouble-free, and also more maintainable. This is probably one of the
least-exploited features of the iostreams library. Another advantage is that your
program’s output will be more consistent.

The criteria | use is that if | have to repeat a formatting sequence more than
three times for a given type of data, it's worth my time to put the sequence into
a custom modifier to ensure that the output of the program will be more
consistent.

FILE I/O

How do I...
15.1 Open a file stream?
15.2 Continually read data until the end of file?
15.3 Handle stream errors?
15.4 Read and write binary files?
15.5 Read from or write to different positions in a file?

A great strength of C++ is that stream processing is identical whether the stream
is a console, a file, or a memory area. This design was intentional, and along
with the inheritance structure of the 10Streams library, allows code to be
written independent of whether the target stream deals with a file, console, or
memory area.

This chapter covers 10Streams with a focus on file streams because some
issues affect them more visibly. It's not that these issues don't exist with the
other streams, but rather that these features are most often used when dealing
with files. For instance, cin does not need to deal with end-of-file notifications
very often because consoles generally do not suddenly end. cin would have to
account for this, however, if it were fed a redirected file through the shell
(consult your operating system or shell manual for information on pipes and
redirection).

CHAPTER 15

15.1

15.2

15.3

154

15.5

FILE 1/0

Open a File Stream

Console streams cin and cout are defined automatically in your program. This
How-To shows how to work with files in the same way, using the same
techniques.

Continually Read Data Until the End of File

Some sample code in the previous chapter hinted at how this works. This
How-To describes how to read data from a file without the last piece appearing
twice and other pesky “off-by-one” errors.

Handle Stream Errors

Errors when handling file streams are much more common than when working
with cout and cin. Most of the techniques here are useful when dealing with
other streams as well, but are in highest demand when working with data files.

Read and Write Binary Files

Binary files are different to deal with than text files. The main reason is that the
entire 10Streams library is based on converting from human-readable values to
machine-readable ones. In this How-To, techniques to bypass this difficulty are
discussed, and the advantages of doing so are also covered.

Read from or Write to Different Positions in a File
Binary data is mainly used for things that need to be accessed quickly, such as
databases and other file types. Binary data also has the advantage of having a
calculable size. This is ideal for retrieving records using random file access
techniques.

COMPLEXITY

15.1

BEGINNING
How do I...

Open a file stream?

Problem

There are lots of options when opening a file stream. What's the best way to
open one?

Technique

The 10Streams library provides two classes to handle file I/O for your
programs. The thing to remember is that the streams cout, cerr, and cin are
also technically file streams, as most operating systems treat consoles as regular

15.1

OPEN A FILE STREAM

files. Although this does not usually affect programs, it can be an important
point if your program has its input or output redirected.

The Classes

The class that handles writing to a file is called ofstream. It is declared like a
normal variable, and its most commonly used constructor looks like this:

ofstream::ofstream(const char* filename, int openmode = ios::out,
0Oint prot = filebuf::openprot);
The counterpart to read from a file is ifstream. Its constructor looks
identical, but operates on different assumptions:

ifstream::ifstream(const char* filename, int openmode = ios::in ,
Oint prot = filebuf::openprot);
Finally, there is the class that can both read and write to a file. Most C++
systems make this stream for input only by default. It's an fstream, and its
constructor looks like this:

fstream::fstream(const char* filename, int openmode = ios::in,
0int prot = filebuf::openprot);
filename is the name of the file you wish to open. Note that even on
MS-DOS and related systems, the forward-slash character should be used for
directory names, for example "c:/config.sys". The reason is that the
backslash character, when followed by certain characters, has special meaning
in strings. For instance, the string "c:\newfile.txt" will not open that file; the
\n sequence translates to a newline sequence. If your program does use the
backslash character, denote that by using two backslashes, like "c:\\newfile".
openmode is the stream mode, which is defined by the base of all 10Streams
classes, ios. The default (which is probably correct for most uses) is ios: :in,
meaning that the stream should refuse to be written to. Additional values need
to be bitwise ored together.

Options include the following:

e ios::app will seek to the end of file and assume to be ready to append.
This really makes little sense for input streams.

e ios::ate Will seek to the end of the file when it's open. Again, this
usually does not make sense for file streams that will be read from.

e ios::binary will open the stream in binary mode. This makes things
somewhat different to work with, in that the stream is not parsed by
whitespace anymore. This will be covered in a later How-To.

e ios::trunc will truncate a file if it exists. This is the default for opening
files for writing if neither ios: :app nor ios: :ate is specified.

CHAPTER 15

FILE 1/0

e ios::nocreate Will cause the stream to fail if the file does not exist. This
is implied in most ofstream implementations.

e ios::noreplace Will cause the stream to fail if the file already exists. Use
this if you don’'t want to overwrite anything. This is implied with
ifstreams.

The constructor’s prot argument is the file'’s opening mode. Which modes
are supported depends on your operating system (and therefore varies from
compiler to compiler). The 10Streams library does its best to accommodate
everybody, but systems are diverse, so your system might support modes that
are not in the stock library. To find out more about the modes that your
operating system and compiler support, look at the documentation for open ()
function in io.h. By default, all file streams classes open the file in read-write
mode, without sharing.

Now that the constructors are covered, a few other things need to be
explained:

= A file stream object can be reused by using the open and close member
functions (note that these are different from the open and close discussed
above). The open member function takes the same argument as the
constructor, and close takes no arguments.

« File stream classes automatically close the file they are associated with
when they fall out of scope.

Steps

To use file stream classes in your programs:

Include the header file fstream. The latest compilers (ANSI C++ 3) no
longer require the .h extension.

#include <fstream>

Declare one of the classes, and open a file either in the constructor or by
using the open method.

Use the class just as you would use cin or cout objects.

How It Works

These classes share the same base classes as the classes cin and cout, meaning
they have the same functionality with a bit extra added. Because of this, your
overloaded insertion and extraction operators should work fine with file

15.2

CONTINUALLY READ DATA UNTIL THE END OF FILE

streams as well. Just make sure that your overloaded operators work with
istream and ostream objects.

COMPLEXITY
INTERMEDIATE

15.2 How do l...

Continually read data until the
end of file?

Problem

The program seems to read from the file one more time than it is supposed to.
Things such as counters are off by one, and the last item is processed twice.

Technique

This is a common problem for programmers. This particular “off-by-one” error
is usually caused by the way the stream is read.

Problem 1: The Reading Loop and Stream
Errors

All 10streams overloaded operators return a reference to the stream that can be
checked for validity after the attempt to read from the stream. The problem is
that most programmers don't realize that reading to the end of the stream is not
an error condition. However, attempting to read past the end of the stream will
cause the stream to go to an “end of file” condition. This is important to
remember in processing loops dealing with streams, and it might be necessary
to add other conditions to ensure that the loop does not iterate once more than
it should.

For instance, the code

while (!inputfile.eof())

{
inputfile >> myString ;
wordcount++

will definitely cause the loop to execute once more than it should. Even if the
last word is read from the file, the eof () member function will not return true
because there is no error condition. The eof () function will return true on the

next iteration because the extraction operator tried to read past the end of the
file.

CHAPTER 15

FILE 1/0

Problem 2: Differing Implementation of the
STL and Other Methods of Extracting Data

Because the C++ 3 Standard is so new, it is possible to run into
implementations of the STL that are not 100 percent compliant with the
standard. For instance, when extracting to a string object, these
implementations might use different methods of reading from the stream, and
possibly reset error conditions.

The sample code provided for this How-To provides two programs that
accomplish the same thing: both open a file as a stream, read each line, count
the words, lines, and characters, and print statistics at the end of it all including
average word lengths. One implementation (fileread.cpp) uses STL strings,
and the other (filerea2.cpp) uses a plain character array and the library
function strlen() to determine the length. The second example runs
identically on all platforms tested, but the first behaves quite differently. The
following code is the read processing loop from fileread.cpp:

while(infile.getline(temp, 128))
{
strstream buffer ;
int pwords = words ;
lines ++ ;
buffer << temp << " " << ends ;

while(buffer >> tmpstring && tmpstring.length())

{
words ++ ;
totallen += tmpstring.length() ;
tmpstring = "" ;
}
cout << words - pwords << ": " << temp << endl ;

}

The outer while loop reads from the input file, line by line. After that, the
infile object is checked for validity. Because the program counts lines, it was
not feasible to pull words directly from the file stream.

Immediately inside the loop, an in-memory stream is declared into which
the line is fed. strstreams work the same as all other streams, but work on
memory areas. The ends stream modifier adds the terminating NULL byte to
denote the end of the stream. The interesting thing here is that Borland C++'
STL string class will generate correct output if the line is terminated with a
space before the ends modifier, while this throws the STL included with GNU
and EGCS compilers off. The code compiles and executes fine, but code
compiled by the Borland and GNU compilers does not match.

15.2

CONTINUALLY READ DATA UNTIL THE END OF FILE

The inner while loop pulls all the individual words out of the in-memory
stream, and then sizes and counts them. The additional check for string length
and the assignment of an empty string to tmpstring are actually unnecessary,
but are left there to make absolutely sure the code is not processing an empty
string. The following code shows the processing loop from filerea2.cpp:

while(infile.getline(temp, 128))

{
strstream buffer ;

int pwords = words ;

lines ++ ;

buffer << temp << ends ;

while(buffer >> tmpstring && strlen(tmpstring))

{

words ++ ;
totallen += strlen(tmpstring) ;

}

cout << words - pwords << ": " << temp << endl ;
}

The preceding code does the same thing as the read processing loop from
fileread.cpp, except it uses an array of char and string functions instead of
the string class.

The preceding code produces correct code with all compilers | have tested it
with. The lesson here is that if time permits, experiment (that is, replace
character strings with string class objects) when getting results that don't look
right from code. Personally, I am surprised at the different output. If you want
to compare the output from different compilers, | left the batch file used to
compile, link, and execute the two programs using Borland C++ and DIJGPP in
the same directory as the source file. | used the source files as input for the
program, with the output redirected to a file for easy comparison.

Steps
The steps presented are generic rules for ensuring that your code will behave as
expected:

When reading from a stream with a loop, use code such as

while (infile >> variable)

Because the input stream is checked for validity each time the variable is
extracted, the condition for the loop will be false as soon as it attempts
to read past the end of the stream.

CHAPTER 15

FILE 1/0

When reading data from a stream whose format you're not familiar with,
use a character array. Until the behavior differences are sorted out
between the STL implementations (which should be soon), it is better to
read an array of characters from a stream, and use it to initialize a string
object to work with.

Be aware that one stream error condition is not getting data of the type
expected from the stream. If you try to extract an int from a stream when
the next item in a stream is a set of non-numerical characters, the stream
will stop reading there. If you want to handle this in your program
instead, read to a temporary character array, and work with that
(strstreams and STL strings have internal conversion functions, in
addition to the runtime library functions).

How It Works

Streams typically only set error conditions if the stream cannot convert the next
item in the stream to the type requested, or if an attempt is made to read past
the end of the stream. Reading up to the end of a stream will not set the error
condition.

COMPLEXITY

15.3

INTERMEDIATE

How do I...
Handle stream errors?

Problem

A stream processing loop stops reading from a file when it encounters an error.
This How-To details a way to handle stream errors gracefully.

Technique

In the previous How-To, it was explained that streams only set error conditions

when reading unexpected input, or when trying to read past the end of a
stream.

The goal now is to deal with the error if it is expected, handle it, and then

continue processing.

15.3

HANDLE STREAM ERRORS

Stream Error Conditions
10Streams classes define only three error conditions:

eof: The stream has arrived at the end of the file. This is only set for streams
that read.

fail: This is the catch-all error. This can be caused by something as simple
as bad input to a hard failure.

bad: The stream had a hard failure. This is usually something beyond the
program’s control, such as the operating system returning an error, or the file no
longer being available (for example, a network connection through which the
file was accessed was lost). When writing to a file, this error could mean that
the drive the file is on ran out of disk space.

How these errors are handled varies from program to program. Usually
handling the bad error state is pretty involved, and varies from operating system
to operating system. When dealing with the operating system directly, getting
the file descriptor might be useful. This can be done (for file streams) by calling
the <filestream name>.rdbuf()->fd() function to get the file descriptor held
by the underlying buffer object.

Steps
An effective method for handling streams errors is one that does not affect the
readability of the code. The idea is to keep the stream processing as clear as
possible to anyone else reading the code and handle the error elsewhere. | tend
to put this into a function to keep the potentially ugly code from polluting an
otherwise transparent processing loop.

These steps assume that an error condition is handled within a reading loop,
but the technique is applicable everywhere.

Create a function definition at the beginning of your C++ program file, or
in another module, if that is what you prefer.

The prototype should look like this:

bool handle_stream_error(istream&);

If your code deals with an output stream, use an ostream reference
instead.

In the file, find the area where the stream is being read from.

Where the code is

while(infile >> indata)

CHAPTER 15

FILE 1/0

change it to

while(handle_stream_error(infile >> indata))

The effect of adding a function here minimizes the impact of the error
handling code on overall readability.

Implement the handle_stream_error function as you see fit. For this
example, the class handles the three error types, and issues messages on
the ones it either can't or should not recover from. The following code
shows the implemented handle_stream error() function from
qread2.cpp

bool handle_stream_error(istream& strm)

{
// handle our favorite error condition, which is
// "No error" :)

if (strm.good()) return true ;
else if (strm.eof())
{
// handle end of file condition
cerr << "\nkEnd of file reached\n" ;
// note that endl is not used, as potentially the
// calling code could want to output something nicely
/] formatted before this message appears on the screen
return false ;

else if (strm.fail())
{
/] encompasses the bad condition, so we need to distinguish
if (strm.bad())
{
cerr << "\nUnrecoverable Failure.\n" ;
return false ;

}

// we can assume that the error state is invalid input, so
// we'll handle this by resetting the stream, and pulling
// one character out and returning ok.
strm.clear() ;
while(!isdigit(strm.peek()) && strm)

int useless = strm.get() ;

return true ;

}

// we fell though the loop for some reason, and some compilers
// spit out a warning if the following is not there:

return false ;

}

Change the processing loop slightly. The preceding error handling
function is designed to ignore all characters from the stream. However,

15.3

HANDLE STREAM ERRORS

when the stream gets an invalid character, it fails first, causing nothing to
be read, and leaving the numeric value untouched. This means the
processing loop might need to deal with repetitive input. The function
could be made to deal with that, but it would detract from the function’s
inherent reusability (reusable except for one line). The following code
shows the reworked processing loop from gread2.cpp:
if(indata != -1)

{

cout << indata << " " ;
indata = -1 ;

}

In this case, it was easiest to invalidate the data read from the file and
check to see whether the value was changed. Depending on the data, it
might be easier to keep the previous value and compare the two. Note
that this change does introduce one possible problem: Should a -1 value
be read from the file, it will not be processed.

How It Works

In the sample code, the error handling decisions are nicely isolated from the
rest of the program. The function receives the ostream object after the
extraction operation has completed (or been attempted, at least), and can then
query the object for its status, handle any predicted errors, and decide whether
the loop should continue based on its findings.

In general, file streams differ from other streams in that they have an
underlying buffer class that holds file-related things such as the file descriptor.
This class is called filebuf, and is returned by the file stream’s member
function rdbuf (). This is important for getting further error information from
the operating system.

Some systems, such as Win32, might also have some information available
though a function that stores the last error encountered. In the case of Win32
specifically, the GetLastError() function can be useful.

Comments

The C++ streams classes only perform minimal error handling for the programs
that use them. This is simply because handling specific errors in a portable and
operating system-independent way is difficult to do well, and the programmer
(you) looking for the error knows best the types of error to expect.

To know more about ways to handle specific errors, consult your operating
system or compiler documentation.

m CHAPTER 15
FILE 1/0

COMPLEXITY
INTERMEDIATE

154 How do l...
Read and write binary files?

Problem

The human representations of data in a computer are essentially text. However,
this file format is not the most efficient. An eight-digit number will take 8 bytes,
plus delimiting spaces, when stored as text, whereas the binary representation is
only 4 bytes, with no delimiter required.

Accuracy is also a concern. Floating-point numbers run the risk of losing
accuracy every time they are converted to text and back. The default precision
of streams output for floating-point numbers is 6, but double and long double
precision floating-point numbers have a much higher degree of accuracy. Again,
space is also a concern (standard floats in binary form take 4 bytes, doubles
take 8, and long doubles take 10), but it is accuracy that’s the bigger concern.

The final concern is performance. Converting text to and from formats that a
computer can use for calculations is time-consuming, and this can significantly
affect program performance when dealing with large amounts of data. Binary
access bypasses all of this, so that in-memory structures can be filled from disk
files with a minimum of processing.

Technique
To open a file for writing, open an ofstream like this:

ofstream myoutfile("output.dat", ios::out | ios::binary) ;

The key here is the ios: :binary open mode. Similarly, to read a binary file,
an ifstream will work with the correct modifier:

ifstream myinfile("input.dat", ios::in | ios::binary) ;
Opening the files, however, is the easiest part. At issue is the core design
philosophy of the 10Streams library. Its insertion and extraction operators are
entirely designed to convert data to and from human representations to

something that can be used in the program. Suppose you have the ofstream
object open, and your code does the following:

int myInt = 234, myOtherInt = 556 ;

myoutfile << myInt << myOtherInt ;

15.4

READ AND WRITE BINARY FILES

Both numbers would still be written to the file as text, and it would look like
the following if you looked at the contents with the DOS type command or the
UNIX cat command (depending on your system).

C:\TEMP> type output.dat
234556
C:\TEMP>

If you were to attempt to read the numbers back, you would get only one
number, and that would be 234556. The way to deal with this is to cast the data
you want to write to the file to the most fundamental of all data types, the char.
A char is essentially a byte on the machine, and that is what to write to the file.

The read and write member functions (which the insertion and extraction
operators ultimately call) are the easiest way to write simple data types in a
binary format. Overloading the insertion and extraction operators is a technique
better suited to classes.

The prototypes of the read and write methods of the streams classes are as
follows:

istream::read(const char* data, int size) ;
ostream::write(const char* data, int size) ;
where data is a pointer to the data you want to write, and size is the size of
the data. The sizeof () operator would be used to get the size.
The revised example of writing to the binary file (assuming the stream is
open, and so on) is
int myInt = 234, myOtherInt = 556 ;

myoutfile.write((char*) &myInt, sizeof(int)) ;
myoutfile.write((char*) &myOtherInt, sizeof(int)) ;

To read the data back (again, assuming the stream is open, and so on):
int myInt, myOtherInt ;

myinfile.read((char*) &myInt, sizeof(int)) ;
myinfile.read((char*) &myOtherInt, sizeof(int)) ;

The key things here are that the address of the variable is cast to a char*,
and that the size of the data type is the second argument. Some programmers
prefer to use the actual variable name rather than the type. Beware of dealing
with strings (that is, nul1l-terminated character arrays) or other arrays in this
manner. sizeof (myArray) would be 4 on most systems, regardless of the
actual size of the array because myArray is just a pointer.

Binary I/O of classes, structs, and other types work exactly the same way.

CHAPTER 15

FILE 1/0

Steps
The sample code is shared between this How-To and How-To 15.5. Note that
these techniques cannot just be applied to an existing program. The choice of
how to store data is so fundamental to how a program operates that this
decision must be made very early in the design process.

Take stock of the stream options available, and open the file stream in
binary mode:
inline
PhoneDatabase: :PhoneDatabase(const char* filename)
: Datafile(filename, ios::in | ios::out |, ios::binary
0 ios::app),
CurrentRecord(0), current(-1)
{
}

The preceding options state to open the file for reading and writing and
not to erase the contents. Each operation after the file is opened will seek
to the position it needs, so starting at the end of the file is acceptable. It is
possible to add a Datafile.seekg (@) into the constructor, but the
downside is that the code will have to seek to the end again to add new
records.

For most applications, it is best to isolate complicated I/O operations to a
few functions per class. This keeps the code in one place, where it is
easier to maintain and troubleshoot. In the sample code, isolate the
operations AddRecord and GetRecord. The following is The
implementation of the AddRecord, GetRecord, and UpdateRecord
functions in phone.cpp

void PhoneDatabase::GetRecord(PhoneRecord& record, int recnum)

{
if(recnum != current)
{
Datafile.seekg((recnum * sizeof (PhoneRecord))) ;
CurrentRecord = ++recnum ;
}
else
CurrentRecord++ ;
Datafile.read((char*) &record, sizeof(PhoneRecord)) ;
}

void PhoneDatabase::UpdateRecord(const PhoneRecord& record,
Oint recnum)
{
if(recnum != current)

{

15.4

READ AND WRITE BINARY FILES

Datafile.seekp((recnum * sizeof(PhoneRecord))) ;
CurrentRecord = recnum++ ;

}
else
CurrentRecord++ ;

Datafile.write((char*) &record, sizeof(PhoneRecord)) ;

}

void PhoneDatabase::AddRecord(const PhoneRecord& record)

{
Datafile.seekp(@, ios::end) ;
CurrentRecord = Datafile.tellp() / sizeof(PhoneRecord) + 1 ;
Datafile.write((char*) &record, sizeof(PhoneRecord)) ;

}

In the preceding code, the class keeps track of the record to which the
database is currently pointing. This will be used to facilitate sequential
processing (using the overloaded >> and << operators).

Build surrounding I/O functions as you see fit. In the case of the example,
the class managing the database was given stream-like operators for linear
processing of records. The following code shows higher-level I/O
operations for the data in phone.cpp:

// Overloaded operators for sequential reading

PhoneDatabase& operator<<(PhoneDatabase& strm,
Oconst PhoneRecord& data)

{
strm.AddRecord(data) ;

return strm ;

}

PhoneDatabase& operator>>(PhoneDatabase& strm,
0 PhoneRecord& data)

{
strm.GetRecord(data, strm.current);
return strm ;

}

These functions are designed to behave identically to the functions used
in regular stream processing from the user’s point of view. Other functions
were implemented to facilitate importing data from a text file and printing
data to the screen. Because these are based on true streams, they deal with
the text mode istream and ostream objects. These functions are there to
be used in importing and exporting data from text. Note in the following
code the extra processing required to work with the same data in text
mode.

CHAPTER 15

FILE 1/0

// overloaded operators for the record structure

inline
ostream& operator<< (ostream& strm, const PhoneRecord& data)

{

strm << data.FirstName << "
<< data.LastName << " "
<< data.AreaCode << " "
<< data.PhoneNumber << "
if(!strlen(data.Extension))
strm << "0 ";
else
strm << data.Extension << " " ;

return strm;

}

inline
istream& operator>> (istream& strm, PhoneRecord& data)

{

strm >> data.FirstName
>> data.LastName
>> data.AreaCode
>> data.PhoneNumber
>> data.Extension ;
if(!strcmp("0", data.Extension))
data.Extension[0] = '\0Q' ;

return strm ;

}

These functions do more processing than their binary counterparts, and
are slower to execute.

Implement error checking. There should be some way for the program
using your class to see whether there has been a problem, and to deal
with it. Functions to overload the typecasting of the managing class to a
boolean type can make possible syntax such as while(db >> records
) for use in processing data. Alternately, your class can internalize error
handling completely. This can be difficult because the class created could
be used in ways that were not initially accounted for in the design. The
following code shows the error reporting and handling functions for the
PhoneDatabase class in phone.cpp
bool operator!() ;

bool bad() { return Datafile.bad() ; }

bool good() { return Datafile.good() ; }

bool fail() { return Datafile.fail() ; }
void clear() { Datafile.clear() ; }

15.4

READ AND WRITE BINARY FILES

// overloaded typecasts to allow while(dbname >> record)
/] style code
operator bool() { return Datafile.good(); }

inline
bool PhoneDatabase: :operator! ()

{
if(!Datafile) return false ;
return true ;

}

Most of the functions query the fstream object that the object contains.
The idea was to emulate the error functions of a true stream class. The
overloaded typecast operator is very useful for loops (as indicated by the
comments).

How It Works

Reading and writing binary data is more straightforward than text in many
ways. There is no need to worry about parsing the data at all—it is ready to be
used as soon as it has been read from disk. The complexities arise more from
the format chosen to write to disk with than from the actual operation.
Database files for commercial programs add much more than the raw data into
headers, such as lists of free blocks in the files, which blocks are taken, and
perhaps even the structure of the data or the data type in the file.

The key points when dealing with reading and writing binary data are

 Remember not to use the built-in stream extraction and insertion
operators. They are designed specifically for text. Overload your own if
you must.

« A binary stream will never receive invalid data. As long as the bytes are
coming, they are valid. If you need some sort of error check for validity,
consider adding some set value to the structure and checking it to make
sure the read alignment is on.

* Try to keep the reading and writing of binary data confined to a few
functions. This will make troubleshooting easier, as well as maintenance.

« Byte alignment settings will affect the size of the structures written to
disk. This can be a problem to deal with when making different versions
of a program interact, as well as different operating system platforms.

CHAPTER 15

FILE 1/0

« Byte ordering is also something to consider when moving data between
platforms. Because the program is dealing with binary data, it is
vulnerable to differences in the in-memory representation of that data.
This is not necessarily the same for all processors, or even all operating
systems.

Comments

There are fewer rules for working with raw binary data, but also more things to
watch for. This puts the responsibility for an effective implementation more on
the programmer. One useful strategy is emulating the streaming functionality
and error handling because they are easy to understand for C++ programmers.

COMPLEXITY

INTERMEDIATE

15,5 How do l...

Read from or write to different
positions in a file?

Problem
Without the ability to move arbitrarily to different locations in a file, data would
have to be read in the same order it was written. This is inconvenient, and all
streams objects contain the functionality to move to different locations in the
stream.

Technique

I0Streams classes implement two functions to facilitate moving around in a
stream. An internal representation of a read/write stream (such as an fstream)
contains both a read location and a write location (which are not guaranteed to
be pointing at the same location in the stream).

Another thing to keep in mind when working with file streams (and streams
in general) is that they are essentially like arrays. An array has an index, and the
index moves ahead as your code extracts data from the stream. When code
inserts items into a stream, it is like appending data to the array. Seeking is just
a matter of repositioning the index in the array. Some streams don't have a
meaningful beginning; for instance, seeking to the beginning to the cout stream
does nothing useful. File streams, however, do have a distinct beginning and an
end, and that is what makes seeking in these streams worthwhile.

15.5

READ FROM OR WRITE TO DIFFERENT POSITIONS IN A FILE

The difference between an array and a stream is that a stream is
self-managing. The stream knows where the data is supposed to go, and does
its best to make sure everything you feed to the stream gets to where you told
the stream to put it.

Stream Position Functions

The following function prototypes are available for working with streams:

Table 15.1 Position-Related Stream Member Functions

streampos istream::tellg() Returns the current position of the input stream.
streampos ostream::tellp() Returns the current position of the output stream.
istream& istream::seekg Moves to the absolute position given by

(streampos position) position in the stream.

istream& istream::seekg Moves a set number of bytes based on the

(streamoff offset, seek current position. seek_dir is an enum that’s

_dir direction) declared in the ios base class. ios: :beg means

to seek from the beginning of the file, ios: :cur
means seek forward from the current position

(if offset is negative, it means backward), and
ios::end seeks from the end of the file

(which means a negative offset should be specified
because the stream cannot go further forward).

ostream& ostream::seekp Moves to the absolute position in

(streampos position) the output stream.

ostream& ostreanm::seekp Moves to a relative position in the stream.
(streamoff offset, seek See istream::seekg earlier in this table.

_dir direction)

The preceding positioning member functions are present in any stream, but
vary somewhat in implementation. The positional arguments (offset and
position for the preceding functions) are usually 1ong values (hence, the
common operating system limitation of a 2GB maximum file size), but this is
highly compiler dependent. Most compilers use a defined type that the
compiler can easily cast to from a 1ong value, but might support larger
numbers. Unless your program needs to work with files larger than 2GB, you
are safe in believing that these parameters are 1ong values. Beyond that, it is
time to delve into your compiler documentation.

CHAPTER 15

FILE 1/0

Seeking Strategies

Using the seek function is usually only useful when dealing with binary
streams. It is most commonly used for database or database-like operations in
which records are fetched from a data file. To get to a certain record stored in a
binary file, the location of the record must be calculated. This calculation is
usually a multiple of the record size; for example, sizeof (myRecord)*2 would
be the start position of the third record in the file. The following function
(from file.cpp) demonstrates random record access for the data file:

void PhoneDatabase::GetRecord(PhoneRecord& record, int recnum)

{

if(recnum != current)

{
Datafile.seekg((recnum * sizeof(PhoneRecord))) ;
CurrentRecord = ++recnum ;

}

else
CurrentRecord++ ;

Datafile.read((char*) &record, sizeof(PhoneRecord)) ;

}

What'’s the best way to work with data in files? It depends on the data. It is
possible to abstract this any number of ways. For some kinds of data, it's
possible to overload the array index operator[] to implement random access.
This can be implemented either by accessing a function like the preceding code
(to keep the code that actually fetches things in one place for easy
maintainability), or by directly accessing the file stream object. For sequential
access, your database file management class can be given a stream-like interface,
but records can be streamed instead of streaming fundamental data types.

Using overloading, its possible to stream objects out of a database and to an
output stream using code that looks very familiar:

cout << rec << endl ;

while(db >> rec)

{

cout << rec << endl ;

}

This technique is useful any time anything sequential needs to be done. This
does not necessary reflect that the underlying data has to be sequential. For
instance, a SQL query class might allow the returned result records to be
accessed sequentially using this method.

15.5

L 545 pumy

READ FROM OR WRITE TO DIFFERENT POSITIONS IN A FILE

Steps

Using the ability to seek in a stream is very data dependent. The details of these
techniques are used in the sample phonebook program, sample.cpp. Using the
ability to seek should never be added to an existing program because it’s so
fundamental to the way data is handled.

Seek functions see the data file as an array of bytes, and it’s up to your
program to determine from what point to start interpreting data. Usually,
it will be some multiple of the size of the data type in the file, or some
offset (for any leading information) plus some multiple of the record
stored.

Seek functions for reading use the seekg member function, as
demonstrated in the following code:

void PhoneDatabase::GetRecord(PhoneRecord& record, int recnum)

{

if(recnum != current)

{
Datafile.seekg((recnum * sizeof(PhoneRecord))) ;
CurrentRecord = ++recnum ;

}

else
CurrentRecord++ ;

Datafile.read((char*) &record, sizeof(PhoneRecord)) ;

}

When seeking to write to a location to a file, use the seekp member
function, as shown in the following:

void PhoneDatabase::UpdateRecord(const PhoneRecord& record,
0O int recnum)
{
if(recnum != current)
{
Datafile.seekp((recnum * sizeof (PhoneRecord))) ;
CurrentRecord = recnum++ ;
}
else
CurrentRecord++ ;

Datafile.write((char*) &record, sizeof(PhoneRecord)) ;

CHAPTER 15

FILE 1/0

Seeking from the current position accepts both positive and negative
values, the following code demonstrates using tellp() and a relative
seekp () function.

void PhoneDatabase: :AddRecord(const PhoneRecord& record)

{
Datafile.seekp(@, ios::end) ;
CurrentRecord = Datafile.tellp() / sizeof(PhoneRecord) + 1 ;
Datafile.write((char*) &record, sizeof(PhoneRecord)) ;
}

The technique for finding the current record index based on the file
position is also shown in the preceding code.

How It Works

As mentioned earlier, seek methods view a binary data file as an array of bytes.
This gives the programmer the freedom to implement any required sort of
structure in the disk file. Some file formats become quite elaborate. Complexity
is the flip side of the coin—the more complex the file format, the more
complex the code to read data from the file, and the greater the chance of a
programming error.

Comments

When working with binary files, and especially when designing your own file
format, simplicity is the goal to keep in mind. Many subtle errors can be
introduced into a program when code that works with binary data miscalculates
the offset in the file it is to read from. Another thing to keep in mind is that
most binary data, such as floating-point numbers and integers, is not
human-readable in binary form, which makes debugging of subtle file format
errors even more difficult.

PART V|
APPENDIXES

NAMESPACES

Being a member of the C++ standardization committee, its not hard to guess
what my opinion is. Seriously, Java and C++ differ radically from one another in
many respects. One of them is compiler writing. Bjarne Stroustrup addresses
this issue: “the overall principle [is] that where there is a choice between
inconveniencing compiler writers and annoying users, the compiler writers
should be inconvenienced” (The Evolution of C++, ISBN 026273107x, page 50).
My experience with Java has led me to conclude that its designers adopted the
opposite approach: simple compiler writing at the cost of programmer’s
drudgery. Some examples of this are the exclusion of operator overloading,
enum types, and default arguments. They do not incur overhead of any kind,
and no one doubts their importance and usefulness. Yet they make a compiler
writer's work more difficult.

Namespaces are very different from packages. Both provide a mechanism for
name clashing prevention, but remember that namespaces allow a fine-grained
control on the extent to which declarations are injected to a scope. A
using-declaration enables the user to inject only a single constituent, and a fully
qualified name is even finer. Koenig lookup is also meat to ease the life of a
programmer. No equivalents exist in Java.

Namespaces were introduced to the C++ Standard in 1995. This appendix
will explain what namespaces are, how and when they should be used, and
why they were added to the language. Finally, this appendix will discuss the
way namespaces interact with other language features.

m THE WAITE GROUP’'S C++ HOW-TO

THE RATIONALE BEHIND NAMESPACES

To understand why namespaces were added to the language in the first place,
let's use an analogy. Imagine that the file system on your computer didn't have
directories and subdirectories at all. All files would be stored in a flat repository,
visible all the time to every user and application. As a consequence, extreme
difficulties would arise. Filenames would clash (with some systems limiting a
filename to 8 characters and 3 more characters for the extension, this is likely
to happen); simple actions such as listing, copying, and searching files would
be much more difficult. In addition, security and authorization restrictions
would be severely compromised.

Namespaces in C++ are equivalent to directories. They can be nested easily,
they protect your code from name clashes, they allow you to hide declarations,
and they do not incur any runtime or memory overhead. Most of the
components of the C++ Standard Library are grouped under namespace std.
Namespace std is subdivided into additional namespaces such as
std: :rel_ops, which contains the definitions of STL's overloaded operators.

A BRIEF HISTORICAL BACKGROUND

In the early 1990s, when C++ was making its way as a general-purpose
programming language, many vendors were shipping proprietary
implementations of various component classes. Class libraries for string
manipulations, mathematical functions, and containers were integral parts of
frameworks such as MFC, STL, OWL, and others. The proliferation of reusable
components caused a name clashing problem—a class named vector, for
instance, could appear both in a mathematical library and a separate container
library that were used at the same time. It was impossible for the compiler and
the linker to distinguish between the identical names of two different classes.

LARGE-SCALE PROJECTS ARE SUSCEPTIBLE TO
NAME CLASHES

Name clashes are not confined to vendors’ frameworks. In large-scale software
projects, short and elegant names for types and functions can also cause name
conflicts because the same name might be used more than once to denote
different entities. In the pre-namespace era, the only workaround was to use
various affixes in identifiers’ names. This practice, however, is tedious and error
prone:

class string { // short but dangerous. someone else may have

picked this name already...

I
b

class excelSoftCompany_string { // a long name is safer but
tedious. A nightmare if company changes its name...

/...
}

APPENDIX A

B

NAMESPACES

Namespaces allow you to use convenient, short, and intelligible names safely.
Instead of repeating the unwieldy affixes time after time, you can group your
classes and functions in a namespace and factor out the recurring affix like this:

//file excelSoftCompany.h
namespace excelSoftCompany { // a namespace definition

class string {/*..*/};
class vector {/*..*/};

}

PROPERTIES OF NAMESPACES

Namespaces are more than just name containers. They were designed to allow
fast, simple, and efficient migration of legacy code without inflicting overhead
of any kind. Namespaces have several properties that facilitate their usage.

A FULLY QUALIFIED NAME

A namespace is a scope in which declarations and definitions are grouped
together. In order to refer to any of these from another scope, a fully qualified
name is required. The fully qualified name of an identifier consists of its
namespaces(s), followed by scope resolution operator, then its class name, and
finally, the identifier itself. Because both namespaces and classes can be nested,
the resulting name can be rather long, yet it ensures unique identification:

size_t maxPossiblelength =
std::string::npos; //a fully qualified name. npos is a member
of string; string belongs to namespace std

However, repeating the fully qualified name is tedious and less readable. In
general, a using-declaration or a using-directive is preferred.

A USING-DECLARATION AND A
USING-DIRECTIVE

A using-declaration consists of the keyword using followed by

namespace: :member. It instructs the compiler to locate every occurrence of a
certain identifier (type, operator, function, constant, and so on) in the specified
namespace, as if the fully qualified name were supplied:

#include <vector> //STL vector; belongs to namespace std
void main()
{
using std::vector; //using declaration; every occurrence of
vector is looked up in std
vector <int> vi; // instead of std::vector<int>

}

m THE WAITE GROUP’'S C++ HOW-TO

A using-directive, on the other hand, instructs the compiler to recognize all
members of a namespace and not just one. It consists of the following
sequence: using namespace followed by a namespace-name. For example:

#include <vector> // belongs to namespace std
#include <iostream> // iostream classes and operators are also in
namespace std
void main()
{

using namespace std; // a using-directive; all <iostream> and
<vector> declarations now accessible

vector <int> vi;

vi.push_back(10);

cout<<vi[0Q];

}

Let’s look back at the string class example (the code is repeated here for
convenience).

//file excelSoftCompany.h
namespace excelSoftCompany {

class string {/*..*/};
class vector {/*..*/};

You can access your own string class as well as the ANSI string class in the
same program Now.

#include <string> //ANSI string class
#include "excelSoftCompany.h"

void main()

{
using namespace excelSoftCompany;
string s; //referring to class excelSoftCompany::string

std::string standardstr; //now instantiate an ANSI string object

}

NAMESPACES ARE OPEN

The C++ standardization committee was well aware of the fact that related
declarations can span across several translation units. Therefore, a namespace
can be defined in parts. For example:

//file proj_const.h
namespace MyProj {
enum NetProtocols {
TCP_IP,
HTTP,
UubpP
}; // enum

APPENDIX A

NAMESPACES

//file proj_classes.h
namespace MyProj { //now extending MyProj namespace
class RealTimeEncoder{ public: NetProtocols detect()
{return UDP;}
//other class members
}

class NetworkLink {};

class UserInterface {};

In a separate file, the same namespace can be extended with additional
declarations.

The complete namespace can be extracted from both files like this:
//file app.cpp

#include "proj_const.h"
#include "proj_classes.h"

void main() {
using namespace MyProj;
RealTimeEncoder encoder;
NetProtocols protocol = encoder.detect();

}//end main

NAMESPACE ALIASES

Choosing a short name for a namespace can eventually lead to a name clash. Yet
very long namespaces are not easy to use. For this purpose, namespace aliases
can be used. The following sample defines an alias, ESC, of the unwieldy
Excel_Software_Company namespace.

//file decl.h

namespace Excel_Software_Company {
class Date {/*..*/};

class Time {/*..*/};

}

//file calendar.cpp

#include "decl.h"

void main()

{

namespace ESC = Excel_Software_Company; //ESC is an alias for
Excel_Software_Company

ESC::Date date;

ESC::Time time;

}

THE WAITE GROUP’'S C++ HOW-TO

KOENIG LOOKUP

Andrew Koenig, one of the forefathers of C++, devised an algorithm for
resolving namespace members’ lookup. This algorithm is used in all
Standard-conforming compilers to handle cases like the following:

namespace MINE {
class C {};
void func(C);

}

MINE::C c; // global object of type MINE::C

void main() {
func(¢); // OK, MINE::f called
}

No using-declaration or using-directive exists in the program. Still, the
compiler did the right thing by applying Koenig lookup. How does Koenig
lookup work?

Koenig lookup instructs the compiler to look not just at the usual places
such as the local scope, but also at the namespace that contains the argument’s
type. Thus, in the following source line the compiler detects that the object c,
which is the argument of the function f, belongs to namespace MINE.
Consequently, the compiler looks at namespace MINE to locate the declaration
of f.

func(¢); // OK, MINE::f called

NAMESPACES DO NOT INCUR ADDITIONAL
OVERHEAD

The underlying implementation of namespaces is by means of name mangling.
The compiler incorporates the function name with its list of arguments, class
name, and namespace in order to create a unique name for it. Therefore,
namespaces do not incur runtime or memory overhead.

THE INTERACTION OF NAMESPACES WITH
OTHER LANGUAGE FEATURES

Namespaces affect other features of the language as well as programming
techniques. For example, namespaces make some features superfluous or
undesirable.

APPENDIX A

NAMESPACES

:: OPERATOR SHOULD NOT BE USED TO
DESIGNATE A GLOBAL FUNCTION

In some frameworks (MFC, for instance), it is customary to add the scope
resolution operator, : :, before a global function’s name to mark it explicitly as a
function that is not a class member. For example:

void String::operator = (const String& other)

{
r:strepy (this->buffer, &other); // strcpy is preceded by ::
operator, not a good idea

}

This practice is not recommended anymore. Many of the standard functions
that used to be global are now grouped under namespaces. For example,
strcpy now belongs to namespace std, as do most of the Standard library’s
functions. Preceding these functions with the scope resolution operator will
stymie the lookup algorithm of the compiler, resulting in compilation errors.
Therefore, it's advisable to use the function's name without the scope resolution
operator.

TURNING AN EXTERNAL FUNCTION INTO A
FILE-LOCAL FUNCTION

In standard C, a function declared as static has an internal linkage; it is
accessible only from within the translation unit (source file) in which it is
declared. This technique is used to support information hiding, such as in the
following sample:

//File hidden.c

static void decipher(FILE *f);//function accessible only from
within this file

//now use this function in the current source file
decipher ("passwords.bin");
//end of file

Though still supported in C++, this convention is now considered a
deprecated feature, which means that future releases of your compiler might
issue a warning message when finding a static function that is not a member of
a class. To make a function accessible only from within the translation unit in

THE WAITE GROUP’'S C++ HOW-TO

which it is declared, you should use a nameless namespace instead. You might
do that, for instance, when you migrate C code. The following example demon-
strates this technique:

//File hidden.cpp

namespace { //nameless
void decipher(FILE *f); //accessible only from within this file

}

//now use the function in the current source file. No 'using'
declarations or directives are needed.
decipher ("passwords.bin");

It is guaranteed that nameless namespaces in different source files are
unique. If you declare another function with the same name in a nameless
namespace of another file, the two functions are hidden from one another and
their names do not clash.

STANDARD HEADERS NAMES

All Standard C++ header files now have to be #included in the following way:

#include <iostream> //note: no ".h" extension

That is, the .h extension is omitted. This convention applies to the Standard
C header files as well, with the addition of the letter ¢ affixed to their name. A
C Standard header formerly named <xxx.h> is now <cxxx>. For example:

#include <cassert> //formerly: <assert.h> note the prefix 'c'
and the omission of ".h"

The older convention for C headers, <xxx.h>, is still supported, but is now
considered deprecated and should not be used in new C++ code. The reason is
that C <xxx.h> headers would inject their declarations into the global name-
space. In C++, most standard declarations are grouped under namespace std,
and so are the <cxxx> Standard C headers. No inference should be drawn from
the actual name convention used on the physical location of a header file or its
underlying name. In fact, most implementations share a single physical file for
both the <xxx.h> and its corresponding <cxxx> notation. This is feasible due to
some under-the-hood preprocessor tricks. This convention eliminates name
conflicts that might occur when global declarations are used. Remember that
you must have a using-declaration, a using-directive, or a fully qualified name
in order to access the declarations in the new-style standard headers:

#include <cstdio>
using namespace std; //using directive

void f(){
printf ("Hello World\n");
}

APPENDIX A

NAMESPACES

RESTRICTIONS ON NAMESPACES

The C++ Standard defines several restrictions on the use of namespaces. These
restrictions are meant to avert anomalies or ambiguities that would create havoc
in the language.

NAMESPACE STD MAY NOT BE MODIFIED

Generally, namespaces are open. It is perfectly legal to expand existing name-
spaces with additional declarations and definitions across several files. The only
exception to the rule is namespace std. According to the Standard, the result of
modifying namespace std with additional declarations—Ilet alone a removal of
existing ones—yields undefined behavior and should therefore be avoided. This
restriction might seem arbitrary, but its just common sense—any attempt to
tamper with namespace std undermines the very concept of a namespace dedi-
cated exclusively to standard declarations.

USER-DEFINED NEW AND DELETE CANNOT BE
DECLARED IN A NAMESPACE

The Standard prohibits declarations of new and delete operators in a
namespace. To see why, consider the following example:

char *pc; //global

namespace A {
void operator new (size_t);
void operator delete (void *);

void func ()
{

pc = new char ('a'); //using A::new
}

}

void f() { delete pc; } // which version of delete to call,
A::delete or standard delete?

Some programmers expect the operator A: :delete to be selected because it
matches the operator new that was used to allocate the storage. Others expect
the standard operator delete to be called because A: :delete is not visible in
function f. By prohibiting declarations of new and delete in a namespace, this
hassle is avoided.

m THE WAITE GROUP’'S C++ HOW-TO

COMMENTS

Namespaces were the latest addition to the C++ Standard. Therefore, not all
existing compilers support this feature yet. However, all compiler vendors will
provide namespace-supporting compilers in the near future. The importance of
namespaces cannot be over-emphasized. As you have seen, any non-trivial C++
program uses components of the Standard Template Library, the iostream
library, and other standard header files—all of which are now declared in
namespace std.

C++ offers three methods for injecting a namespace constituent into the
current scope. The first is a using-directive, which injects all of the members of
a namespace into the current scope. The second is a using-declaration, which
is more selective and enables the injection of a single component from a
namespace. Finally, a fully qualified name uniquely identifies a namespace
member. However, namespaces provide more than a mechanism for the
prevention of name clashing; they can streamline the process of version control
by assigning different namespaces to a namespace alias. In addition, the
argument-dependent lookup, or Koenig lookup, captures the programmer’s
intention without forcing him or her to use explicit references to a namespace.

RUNTIME TYPE
INFORMATION

One of the fundamental principles of object-oriented programming is
polymorphism, which is the ability of different objects to react in an individual
manner to the same message. Polymorphism is widely used in natural
languages. Consider the verb “to close.” It means different things when applied
to different objects. Closing a door, closing a bank account, and closing a
program’s window are all different actions; the exact meaning of closing
depends on the object on which the action is performed. Similarly,
polymorphism in object-oriented programming means that the interpretation of
a message depends on its object. In C++, polymorphism is implemented via
static and dynamic binding. Dynamic binding is a delayed resolution of which
function is invoked. The resolution in dynamic binding is delayed until
runtime. Static binding, on the other hand, resolves function calls at
compile-time.

STATIC BINDING

C++ has two mechanisms for implementing static polymorphism:

e Operator overloading. Applying operator +=, for example, to an int or a
string is interpreted by each of these objects in an individual manner.
But the results can be predicted intuitively, and some similarities can be
found between the two.

m THE WAITE GROUP’'S C++ HOW-TO

e Templates. A vector<int>and a vector<string> react differently; that is,
they execute a different set of instructions when they receive the same
message. However, close behaviors can be expected. For example:

vector < int > vi; vector < string > names;

string name("Bjarne");

vi.push_back(5); // add an integer at the end of the vector
names.push_back (name); //add a string at the end of the vector

DYNAMIC BINDING

Dynamic binding takes the notion of polymorphism one step further. In
dynamic binding, the meaning of a message depends on the object, but the
exact type of the object can be determined only at runtime. Virtual member
functions are a good example of that. The specific version of a virtual function
is unknown at compile time. Therefore, the call resolution is delayed until
runtime. Here is an example:

#include <iostream>
using namespace std;

class base{
public: virtual void f() { cout<< "base"<<endl;}
3

class derived : public base{
public: void f() { cout<< "derived"<<endl;} //overrides base::f

b

void identify(base & b) { // the argument can be an instance of base or any
// object derived from it
b.f(); // which f should be invoked base::f or derived::f? resolution is
// delayed to runtime

}

void main()

{

derived d;
identify(d); // argument is an object derived from base

}

Please note that the function identify can receive any object derived from
class base, even objects of subclasses that were defined after identify was
compiled.

Dynamic binding has enormous advantages. In this example, it enables the
user to extend the functionality of base without modifying identify in any
way. In procedural programming, such flexibility is impossible. Furthermore,
the underlying mechanism of dynamic binding is automatic. The programmer
doesn’t need to implement the code for runtime lookup and dispatch of a

APPENDIX B

RUNTIME TYPE INFORMATION

virtual function, nor does he or she need to check the dynamic type of the
object. Still, under some circumstances, detecting of the dynamic type of an
object is unavoidable. In this appendix, you will learn when and how runtime
type information (RTTI) is used.

Virtual Functions

Suppose you have to develop a file manager application that is a component of
a GUI-based operating system. The files in the system are represented as icons
that respond to a right-click of a mouse, and display a menu with options such
as open, close, read, and so on. The underlying implementation of the file
system relies on a class hierarchy that represents files of various types. A
well-designed class hierarchy usually has an abstract class serving as an
interface:

class File { //abstract

public: virtual void open() =0; //pure virtual member function
public: virtual void read() =0;

public: virtual void write() =0;

public: virtual ~File () =0;

s

At a lower level in the hierarchy is a set of derived classes that implement the
common interface. Each of these classes represents a different family of files. To
simplify the discussion, let’s assume there are only two file types in the system:
binary .exe files and text files.

class BinaryFile : public File {

public:
void open () { OS_execute(this); } //implement the pure virtual function
//...other member functions

}s

class TextFile : public File {

public:

void open () { Activate_word_processor (); } //implement pure virtual function
//other member functions of File are implemented here

void virtual print(); // an additional member function

};

The pure virtual function open is implemented in every derived class
according to the type of the file. Therefore, a TextFile object activates a word
processor, whereas a BinaryFile object invokes the operating system’s API
function 0s_execute, which in turn executes the program stored in the binary
file.

There are several differences between a binary file and a text file. For
example, a text file can be printed directly on a screen or a printer because it
consists of a sequence of printable characters. Conversely, a binary file with an
.exe extension contains a stream of bits. Therefore, such a file cannot be

THE WAITE GROUP’'S C++ HOW-TO

printed or displayed on a screen directly. It must be converted to a text file first,
usually by a utility that translates the binary data into its symbolic
representations. For instance, the sequence 8110010 can be replaced by a
corresponding move esp, ebp assembly directive. Therefore, the member
function print is declared only in class TextFile.

In this file manager, a right-click of a mouse on a file icon opens a menu of
messages (options) to which the object can respond. For that purpose, the
operating system has a function that takes a reference to a File:

OnRightClick (File & file); //operating system's API function

Obviously, no object of class File can be instantiated because File is an
abstract class. However, the function onrightClick can accept any object
derived from File. For instance, when the user right-clicks on a file icon and
chooses the Open option, onRightClick invokes the virtual member function
open of its argument, and the appropriate member function is called.

OnRightClick (File & file) //operating system's API function
{

switch (message){

/...

case m_open:
file.open();

break;

}

So far, so good. You have implemented a polymorphic class hierarchy and a
generic function that does not depend on the dynamic type of its argument. In
this case, the language support for virtual functions was sufficient for the
purpose; no explicit RTTI was required. Well, not exactly. You might have
noticed that file printing was not addressed. Let's look at the definition of class
TextFile again:

class TextFile : public File {
public:
void open () { Activate_word_processor (); } //implement the pure virtual
//function
void virtual print();
s
The member function print is not a part of the common interface
implemented by all files in this system. It would be a design error to move it to
the abstract class File because binary files are nonprintable and cannot define a
meaningful operation for it. Then again, onRightClick has to support file
printing when it handles a text file. In this case, ordinary polymorphism in the
form of virtual member functions is insufficient. All that onRightClick knows

APPENDIX B W
RUNTIME TYPE INFORMATION

about its argument is that the argument is derived from File, which isn't
enough to tell whether the actual object is printable or not. Clearly,
OnRightClick needs more information about the dynamic type of its argument
to handle file printing properly. This is where the need for runtime type infor-
mation arises.

HISTORICAL BACKGROUND

Originally, C++ did not support RTTI. Furthermore, its creators balked at the
idea of adding RTTI support to C++ for at least two reasons. First, they wanted
to preserve backward compatibility with C. Second, they were concerned about
efficiency. Other RTTI-enabled languages, such as Smalltalk and LISP were
characterized by sluggish performance. C++ designers attempted to preserve the
efficiency of C. Still, it became apparent that under some circumstances, static
type checking alone was insufficient. The addition of multiple inheritance

(and consequently, virtual inheritance) to C++ in 1989 gave overwhelming
ammunition to the proponents of RTTI.

NOTE

Multiple inheritance will not be discussed here. Nonetheless, it is
important to note that RTTI is required when virtual inheritance is used.

Eventually, the C++ standardization committee approved the addition of
RTTI to the language. Two new operators, dynamic_cast<> and typeid, were
added to C++ to support RTTI. In addition, the class type_info was added to
the Standard Library.

RTTI CONSTITUENTS

RTTI Is Applicable to Polymorphic Objects

Exclusively

It is important to realize that RTTI is applicable to polymorphic objects solely. A
class must have at least one virtual member function in order to have RTTI
support for its objects. C++ does not offer RTTI support for non-polymorphic
classes and primitive types. This restriction is just common sense—a double Or
a string cannot change its type at runtime. Therefore, there is no point in
detecting its dynamic type—it is identical to the static type anyway. But there is
another reason for confining RTTI support to polymorphic classes. As you
probably know, every object that has at least one virtual member function also
contains a special data member added by the compiler. This member is a
pointer to the virtual function table. The runtime type information is stored in
this table as a pointer to a const type_info object.

m THE WAITE GROUP’'S C++ HOW-TO

Class type_info

For every distinct polymorphic type, C++ instantiates a corresponding RTTI
object that contains the necessary runtime type information. The RTTI object is
an instance of the standard class type_info (defined in the standard header
<typeinfo>). The type_info object is owned by C++, and may not be altered
in any way by the programmer. The implementation-independent part of
type_info looks like the following (source: ANSI/ISO Final Draft International
Standard of the C++ Programming Language, ISO/IEC 14882: 1998):

namespace std { //class type_info is declared in namespace std
class type_info {
public:
virtual ~type_info(); //may be subclassed
bool operator==(const type_info& rhs) const; // comparison; return true
// if *this == rhs
bool operator!=(const type_info& rhs) const; // return !(*this == rhs)
bool before(const type_info& rhs) const; // ordering
const char* name() const; //return a const null terminated string
// containing the type's name
private:
//objects of this type cannot be copied
type_info(const type_info& rhs);
type_info& operator=(const type_info& rhs);
}; //type_info
}

In general, all instances of the same type share a single type_info object.
The most widely used member functions of type_info are name and
operator==. But before you can invoke these member functions, you have to
access the type_info object itself. How is it done?

Operator typeid

Operator typeid takes either an object or a class name as its argument and
returns a matching const type_info object. The dynamic type of an object can
be examined like this:

OnRightClick (File & file) //operating system's API function

{
if (typeid(file) == typeid(TextFile))
{

//we received a TextFile object; printing should be enabled
}
else
{
//not a TextFile object, printing is not supported
}
}

APPENDIX B

RUNTIME TYPE INFORMATION

To understand how it works, let’s look at the highlighted source line
if (typeid(file) == typeid(TextFile)).

The if statement tests whether the dynamic type of the argument file is
TextFile (the static type of file is File, of course). The leftmost expression
typeid(file) returns a type_info object that holds the necessary runtime
type information associated with the object file. The rightmost expression
typeid(TextFile) returns the type information associated with class TextFile.
Of course, when typeid is applied to a class name (rather than an object) it
always returns the type_info object that corresponds to that class name. As
you saw earlier, type_info overloads the operator ==. Therefore, the type_info
object returned by the leftmost typeid expression is compared to the
type_info object returned by the rightmost typeid expression. If indeed file
is an instance of TextFile, the if statement evaluates to true. In this case,
onRightClick displays an additional option in the menu: print. If, on the
other hand, file is not a TextFile, the if statement evaluates to false, and
the print option will not be displayed.

This is all nice and well, but a typeid-based solution incurs a drawback.
Suppose you want to add support for a new type of file, say an HTML file.
What happens when the file manager application has to be extended? HTML
files are essentially text files. They can be read and printed. However, they differ
from plain text files in some respects. An open message applied to an HTML file
launches a browser rather than a word processor. In addition, HTML files have
to be converted to a printable format before they can be printed. The need to
extend a system’s functionality at a minimal cost is an everyday challenge that
software developers face. Object-oriented programming and design can facilitate
the task. By subclassing TextFile, you can reuse its existing behavior and
implement only the additional functionality required for HTML files:

class HTMLFile : public TextFile {
void open () { Launch_Browser (); } //override TextFile::open
void virtual print(); // perform the necessary conversions to a printable
// format and then print file

}s
This is only half of the story. onRightClick will fail badly when it receives
an object of type HTMLFile. Let’s look at it again to see why:

OnRightClick (File & file) //operating system's API function

{
if (typeid(file) == typeid(TextFile))
{

//we received a TextFile object; printing should be enabled

}

m THE WAITE GROUP’'S C++ HOW-TO

else //O0PS! we get here when file is of type HTMLFile
{
}

}

typeid returns the exact type information of its argument. Therefore, the if
statement in onRightClick will evaluate to false when the argument is an
HTMLFile. However, a false value implies a binary file. Consequently, no
support for printing is available. This onerous bug is likely to occur every time
support is added for a new file type. Fortunately, C++ offers a better way to
handle this situation.

Operator dynamic_cast<>

It is a mistake to let onRightClick take care of every conceivable class type. By
doing that, you are forced to modify it whenever you add a new file class or
modify an existing class. In software design in general, and object-oriented
design in particular, such dependencies should be minimized. If you examine
onRightClick closely, you will realize that it shouldn't really know whether its
argument is an instance of class TextFile (or any other class for that matter).
Rather, all onRightClick needs to know is whether its argument is a TextFile.
There is a big difference between the two; onRightClick has to know whether
its argument is a TextFile object or an instance of a class derived from
TextFile. However, typeid is incapable of examining the derivation hierarchy
of an object. For this purpose, you have to use the operator dynamic_cast<>.
dynamic_cast<> takes two arguments. The first is a type name. The second
argument is a polymorphic object, which dynamic_cast<> attempts to cast at
runtime to the desired type. For example:

dynamic_cast <TextFile &> (file); //attempt to cast file to a reference to an
// object of type TextFile

If the attempted cast succeeds, either the second argument is an instance of
the class name that appears as the second argument, or it is an object derived
from it. The dynamic_cast<> expression above will succeed if file is a
TextFile. This is exactly what onRightClick needs to know to operate
properly. How do you know whether dynamic_cast<> was successful?

There are two flavors of dynamic_cast<>. One uses pointers and the other
uses references. Accordingly, dynamic_cast<> returns a pointer or a reference of
the desired type when it succeeds. When dynamic_cast<> cannot perform the
cast, it returns a null pointer, or in the case of a reference, dynamic_cast<>
throws an exception of type std: :bad_cast. Lets look at a pointer cast
example:

TextFile * pTest = dynamic_cast < TextFile *> (&f); //attempt to cast file
// address to a pointer to
/] TextFile

if (pTest) //dynamic_cast succeeded, file is-a TextFile

APPENDIX B

RUNTIME TYPE INFORMATION

{

else // file is not a TextFile; pTest has a NULL value

{

}

C++ does not have null references. Therefore, when a reference

dynamic_cast<> fails, it throws an exception of type std::bad_cast . That is
why you should always place a reference dynamic_cast<> expression within a
try block and include a suitable catch statement to handle std: :bad_cast
exceptions.

try {

TextFile tf = dynamic_cast < TextFile &> (f); //attempt to cast file to a
// reference to TextFile
/luse tf safely,

catch (std::bad_cast) { //we get here when dynamic_cast<> fails
/1
}
Now you can revise onRightClick to handle HTMLFile objects properly:
OnRightClick (File & file) //operating system's API function

{
try
{
TextFile temp = dynamic_cast<TextFile&> (file);
//display options, including "print"
switch (message){
case m_open:
temp.open(); //virtual; either TextFile::open or HTMLFile::open is executed
break;
case m_print:
temp.print();//virtual; either TextFile::print or HTMLFile::print is
/ /executed
break;
}//switch
Y/ /try
catch (std::bad_cast& noTextFile)
{
/] treat file as a BinaryFile; exclude'print"
}

}// OnRightClick

The revised version of onRightClick handles an object of type HTMLFile
appropriately because an object of type HTMLFile is a TextFile. When the user
clicks on the open message in the file manager application, the function
OnRightClick invokes the member function open of its argument, which
behaves as expected because it was overridden in class HTMLFile. Likewise,
when onRightClick detects that its argument is a TextFile, it displays a print
option. If the user clicks on this option, onRightClick will send the message
print to its argument, which is supposed to react as expected.

m THE WAITE GROUP’'S C++ HOW-TO

COMMENTS

The RTTI mechanism of C++ consists of three components: operators typeid,
operator dynamic_cast<>, and class type_info. RTTI is relatively new in C++.
Some existing compilers do not support it yet. Furthermore, even compilers
that support it can usually be configured to disable RTTI support. The reason is
that RTTI adds a moderate overhead in terms of memory usage, execution
speed, and the size of the executable. Even when there is no explicit usage of
RTTI constructs in a program, the compiler automatically adds the necessary
“scaffolding” to polymorphic objects. To avoid this, you should consult your
compiler's manual to check how you can toggle its RTTI support.

From the object-oriented design point of view, operator dynamic_cast<> is
preferable to typeid because it enables more flexibility and robustness, as you
have seen. However, dynamic_cast<> can be slower than typeid because it
might traverse through the entire derivation tree of an object to decide whether
the object can be cast to the desired type. When complex derivational
hierarchies are used, the incurred performance penalty can be noticeable.
Therefore, it is advisable to use RTTI judiciously. In many cases, a virtual
member function is sufficient to achieve the necessary polymorphic behavior.
Only when virtual member functions are insufficient, should RTTI be
considered.

When using RTTI, please note the following:
e In order to enable RTTI support, an object must have at least one virtual

member function. In addition, you should switch on your compiler’s RTTI
support (please consult your user's manual for further information).

* Make sure your program has a catch statement to handle std: :bad_cast
exception whenever you are using dynamic_cast<> with a reference.

* When using dynamic_cast<> with a pointer, always check the returned
value.

INDEX

Symbols

#include directive, 14

>> operator, 20

* operator, purpose of, 34
<< operator, 15

= (assignment) operator, 116
== operator, 328

A

abort function, 375, 391-393
abstraction, 56
access
elements (built-in arrays), 254
encapsulated data, 109
classes, 144-148
variables, 169-174
access control (keywords), 121
access functions, 132
access specifiers, 76
accessor member functions, 90
accessors (member functions), 77
accumulate algorithm, 346-351
accumulated sums (container elements), 319,
345-351
actions (container ranges, repeating), 318,
333-337
addition operator (+), overloading, 134
addRecord function, 377
addRecord method, 379-380
algorithms
accumulate, 346-351
count, 329
equal, 318, 338-341
find, 329
for each, 333-337
functionality, increasing, 333
legacy code, 287
member functions, 316
mismatch, 318, 338-341
mutating, 362
mutation operations, 316
nonmutating operations, 316
nonmutative, 334
numeric operations, 316-318
partial sum, 346-351
predicates (power), 333
search, 342-345

sort (vectors), 358
sorting operations, 316-317
Standard C Library, 287-312
STL algorithms, 288, 316
unique, 320, 325, 329
aliases (namespaces), 553
alignment, 511
allocation
containers, automatic, 268-273
embedded allocators (STL containers), 253
memory, 376
dynamic, 475-479
at runtime, 41
analyzing source code, 13-15
allocating and deallocating memory
program, 39-41
calculations program, 18-19
derived data types program, 31-36
exception handling program, 44-49
loop statements, 22-23
angle brackets (templates), 252
ANSI C macros (runtime error handling), 383
appending arrays, 248
applications, terminating, 375, 391-393
arguments
char *argv[], 16
int argc, 16
prot, 528
gsort function, 292
unique algorithm, 325
value, 32
array allocation statement, 40
arrays, 35
appending, 248
built-in
element access, 254
pointers, 273
characters, 119
compound data types, 220
declaring, 100
delete operator, overloading, 455-469
deleting, memory leaks and, 450-451
double values (template classes), 232
elements, locating, 289, 298-305
for each algorithm, 334-337
new operator, overloading, 455-469
programs, writing, 29-36
gsort function, 288

THE WAITE GROUP’S C++ HOW-TO

sorting, 288-297
gsort function, 289-292
strings, 296
stacks as, 119
template classes, 229-231
assert function, 385-386
assert utility, 374
assignment operator, 116
asterisk (*) in function pointers, 294
at() member function, 249
atexit function, 375, 393-395
attributes, 55
hiding, 90

B

bad alloc class, 45
bad error, 533
base classes, 57, 60-61
inheritance, declaration, 194
member functions (subclasses), 256
binary files, 526, 536-542
binary operators, overloading, 134-139
BinaryFile object, 561
binding
dynamic binding, 293, 560-563
late binding, 293
static binding, 559
block comments, 14
block style, 15
blocks
catch, 46-48
try, 46-48, 416-417
bool data type, 20, 73
braces in loops, 24
bsearch function, 289, 298-301
buffers
dynamically creating, 128
1/0 libraries, 501
size, adjusting automatically, 250
built-in arrays
elements, accessing, 254
pointers, 273
byte alignment settings, 448
byte padding structures, 449

C

C comments, 288

Calc() member function, 183
calculations, writing, 17-20
callback functions, 292-295
calloc function, 376

cast operator, 288

catch block, 46-48

catch clause, 416-425

catch constructs, 410

CATCH directory, 419
catch ordering, 419-425
changing references, 32
char *argv[] argument, 16
char data type, 20
characters, 119
cin object, 20
class compatibility, 500, 503-504
console stream, 526
class keyword, 76
classes, 55, 109, 169
access (encapsulated data), 144-148
bad alloc, 45
base classes, 57, 60-61
cin (compatibility), 500, 503-504
constructors, 76, 121
containers
sequential, 318-328
see also container classes
cout (compatibility), 500, 503-504
creating, 72-80
declaration, 73, 120, 123
header line, 196
overloaded operators, 141
writing, 131
deconstructors, 121
defining, 73
delete operator, overriding, 451-455
derived, 195
member functions, 94
variables, 201
destructors, 77
dynamically allocated memory clean up,
475-479
encapsulated data access, 109
errors (runtime), 376
exception, 410, 425-429
file stream, 528
friend, 147-148
fstream, reading/writing to files, 527
functions, coding, 122
ifstream, reading files, 527
implementation, 73, 124
constructor functions, 131
destructor functions, 131
inheritance, 56-62
instantiation (macros), 502
interfaces, 77
internal information, hiding, 118
10Streams
base classes, 501
error conditions, 533
linked list, 151
members (static), 72, 97-101
memory management, 473-495
memory use, 447-450

HHDEX E

new operator, overriding, 451-455 constructor functions, class implementation, 131

object clean up, 479-483
ofstream, writing to files, 527-528
runtime errors, 400-405
Shape, 186-190
size, 450
sort order, 361
SStack (data members), 120
stack, defining, 123
string, 264
structures comparison, 108, 151-155
templates, 220, 252
testing, 124, 133
TSimple, 227-228
type_info, 564
variables, access, 169-174
views, 89-91
virtual, 161, 206-216
when to use, 128, 151-155
clean up (classes), 479-483
code
access functions, 132
modular, 128
source
compiling, 13
described, 12
linking, 13
try block, 416-417
code pointers, 292-295
CodeGuard (Borland), 450
coding class functions, 122
comments
block, 14
C, 288
line, 14
styles, 14-17, 20, 24, 37, 41, 49
compare callback function, 295
comparison functions, 356
comparisons
lexicographical, 297
sequences, 318, 337-341
compilers
DJGPP, 75
function of, 13
compiling
source code, 13
statements, troubleshooting, 16
compound data types (template classes), 220,
228-232
compound statements, 19
conflicts in naming, see namespaces
console streams
cin, 526
cout, 526
const keyword, 20
const modifier, 77
const variable, 20

constructors, 121
class instances, 181
classes, 76
defining (template classes), 222
inline member functions, 99
memory allocation, 78
names, 186
overloaded (signatures), 189
private variables, 173
selecting, 161, 186-190
signatures, 186
SStack, 124
container classes, 247-284
container objects, 249-254
containers
accumulated sums, 319
allocation/reallocation, 268-273
automatic, 249, 268-273
memory allocation scheme, 268
deque, 320
elements, 250
accumulated sums, 345-351
accumulating, 319
displaying all, 273-278
modifying, 249, 257-260
order, 319, 362-368
reading, 249, 254-256
sorting, 319
ranges, repeating actions, 318, 333-337
sequential (classes), 318-328
sorting, 351-361
stack, 261-268
STL, 248-250
embedded allocators, 253
values
searching for sequences, 319
sequences, searching for, 341-345
vector, 320
conversion bases, 509-511
count algorithm, 329
cout, 36, 423
class compatibility, 500, 503-504
console stream, 526
formatting with, 500, 504-515
creating
data types, 108
loop statements, 21-25
programs

to allocate and deallocate memory, 37-41

with derived data types, 29-36

exception handling, 41-50

without knowing C++, 12-17

with one or more functions, 25-28

to perform calculations, 17-20
CurrentElement variable, 124

m THE WAITE GROUP’S C++ HOW-TO

D

data, hiding from external programs, 118-128
data declaration, 130
data extraction (STL), 530-531
data hiding, see encapsulation
data members, 121
encapsulation, 87
SStack class, 120
see also variables
data models
LIFO, 249, 261-268
queue, 250, 278-281
data operations (declaration), 352
data pointers, 292-295
data types, 108
bool, 20, 73
char, 20
compound (template classes), 220, 228-232
creating, 110-117, 129
derived (programs)
writing, 29-33, 35-50
double, 20
fields, 129
float, 20, 136
int, 14, 20
long, 20
template classes
simple data types, 221-225
undefined, 220, 233-238
unknown, 222
TSimple class, 227-228
variables, 110
databases, initialization, 415
dbClose() function, 418
dbCloseEH() function, 416
dbGetDat() function, 417
dbGetDataEH() function, 416
dblnit() function, 415-417
dbInitEH() function, 416
dbOpen() function, 415-417
dbOpenEH() function, 416
DDate type, 113
deallocation (self deallocation), 483-494
debugging
assert function, 385-386
assert utility, 374
inheritance and, 161
memory management, 451
decimal points, setting, 507-509
declaration, 62-63
arrays, 100
classes, 73, 120, 123
header line, 196
writing, 131
constructors, 76

data, 130
error handlers, 436
inheritance, 194-195
linked list classes, 152
main (optional), 16
member functions, 77
namespaces, 551
overloaded operators, 140
relational operations, 352
struct, 32-33
declarative languages, 58
deconstructors, 121
deference operator, 34
defining
classes, 73
constructors (template classes), 222
enumeration types, 76
pointers, 294
variables (template classes), 235-236
definitions
errorCode, 45
member functions, 196
namespaces, 552-553
stack classes, 123
delete expression, 40
delete operator, 444
free() routines and, 445-446
malloc() routines and, 445-446
overloading for arrays, 455-469
overriding for classes, 451-455
user-defined, namespaces, 557
delete[], 450-451
deleting arrays, memory leaks and, 450-451
deque container, 320-321
derived classes
creating, 195
member functions, 94
variables, 201

derived data types (programs, writing), 29-50
destructor functions (class implementation), 131

destructors, 77-78
directives
#include, 14
preprocessor, 14
using, 75, 252
described, 14
namespaces, 552
directories
CATCH, 419
EXCEPTH, 411
EXCLASS, 426
UNEXPECT, 434
DisplayDate function, 116
displaying container elements, 273-278
divide() function, 428
DJGPP compiler, 75

INDEX

do-while loop, 23
dot notation (member functions), 160, 181-186
dot operators, 79
structures, 117
double data type, 20
dynamic binding, 293, 560-563
dynamically allocated memory (clean up),
475-479
dynamic_cast operator, 563, 566-567

E

ed as text editor, 12
EH string, 414
elements
arrays
locating, 298-305
location, 289
container ranges, repeating actions, 333-337
containers, 250
accumulated sums, 345-351
accumulating, 319
displaying all, 273-278
modifying, 249, 257-260
order, 319, 362-368
reading, 249, 254-256
sorting, 319
vectors
inserting, 250-254
modifying, 257-260
reading, 254-256
ellipsis in catch clause, 424
embedded allocators (STL containers), 253
encapsulation, 54, 56, 62-63, 72, 87-91, 108, 122,
128-134
accessing data, 144-148
data access, 109
friend functions and, 148
security and, 134
enumeration types, 76
EOF (end of file), 526
eof error, 533
reading files, 529-532
equal algorithm, 318, 338-341
Equal() function, 163
equality operators, overloading, 109, 139-144
errno variable, clearing, 382
error conditions (IOStreams classes), 533
error detection
reading files, 375, 395-397
writing to files, 375
error handlers, declaration, 436
error handling, 374-407
function error values, 400
maintaining state, 397-399
programs, writing, 41-50

raise function, 387-391
runtime errors, 374
signal function, 387-391
stream errors, 526
streams, 532-535
ErrorClass, 400, 402, 405
errorCode definition, 45
errors
bad, 533
eof, 533
fail, 533
off-by-one, 529-532
one-off, 35
potential, exception handling, 411-418
run time (classes), 400-405
runtime, reporting, 381-385
runtime errors, 376-381
stream errors, reading loop, 529
examining source code
allocating and deallocating memory
program, 39-41
calculations program, 18-19
derived data types program, 31-36
exception handling program, 44-49
first C++ program, 13-15
loop statements, 22-23
EXCEPTH directory, 411
exception classes, 410
implementation, 425-429
exception handling, 409-439
LIFO data model, 261
potential error conditions, 411-418
programs, writing, 41-50
rethrowing exceptions, 410
exception specification, 45
exceptions
functions, specifying, 410
rethrowing, 410, 419-425
specifying for functions, 430-434
unexpected, 434-437
EXCLASS directory, 426
exit function, 375, 393-395
ExitCurrentScope, 267
exiting functions, forcing, 267
expressions
delete, 40
initializer, 40
new, 39-40, 79
return, 15
validity testing, 385
external functions (file-local function), 555-556
external programs, hiding data, 118-128
extracting data (STL implementations), 530-531
extraction operator
described, 20
overloading, 242

. -

THE WAITE GROUP’S C++ HOW-TO

F

fail error, 533
ferror function, 375, 396
fields (data types), 129
FIFO (first-in-first-out), 279
file 1/0, 525-547
file stream classes, 528
file streams, opening, 526-529
file-local functions (external functions), 555-556
files
binary, reading/writing, 536-542
header files, 76, 288
iostream, 16
opening, writing to, 536
reading
different positions, 542-546
error detection, 375, 395-397
ifstream class, 527
reading from (different positions), 526
reading/writing to (ifstream class), 527
stack.h, 123
writing to
different positions, 526, 542-546
error detection, 395-397
ofstream class, 527-528
find algorithm, 329
float data type, 20, 136
float values (Transaction float), 347
floating-point numbers, 192, 512-514, 536
for each algorithm, 333-337
for loop, 24-25, 100
forcing function exit, 267
formatting
alignment, 511
comments, 14-17, 20, 24, 37, 41, 49
conversion bases, 509-511
cout, 500, 504-515
decimal points, 507-509
floating-point numbers (scientific notation),
512-514
ostream objects, 500, 504-515
positive numbers, 511
whitespace, 507
free(') function, 444-469
deleting operator and, 445-446
new operator and, 445-446
friend classes, 147-148
friend functions, 145-148
fstream class, reading/writing to files, 527
function calls, results, 415
function members, 121
function overloading, implementing, 161
function pointers, 293
functions
abort, 375, 391-393
access functions, 132

addRecord, 377
assert, 385-386
atexit, 375, 393-395
bsearch, 298-301
callback functions, 292, 295
calloc, 376
class functions, coding, 122
comparison functions, 356
constructor, class implementation, 131
dbClose(), 418
dbCloseEH(), 416
dbGetData(), 417
dbGetDataEH(), 416
dbinit(), 415, 417
dblnitEH(), 416
dbOpen(), 415, 417
dbOpenEH(), 416
destructor, class implementation, 131
Display Date, 116
divide(), 428
Equal(), 163
error values, 400
exception throwing, specifying exceptions,
430-434
exceptions, specifying, 410
exit, 375, 393-395
ferror, 375, 396
forcing exit, 267
free(), 444-469
friend, 145-148
GetDate, 116
getValue, 32-36
identify, 560
inlining, 477
InterruptHandler, 388
IsEmpty, 119
IsFull, 119
Ifind, 289
long, 31-32
longjmp, 375, 397-399
lookup functions, 302-309
Isearch, 289
main
described, 14
optional declarations, 16
malloc(), 376, 444-469
member functions, 121
accessors, 90
at(), 249
declaration, 77
dot notation, 160
inline, 99
overloading, 76
overloading addition operator, 134
set(), 173
SStack class, 120
static, 100-101

INDEX

memcpy(), 446-447
memmove, 446-447
multiply, 32

mutator, 77

NameExists, 326

names, 191

new, 376

nonvirtual, 207
overloading, implementing, 191-194
perror, 374, 381-385
Pop, 119

PrintM, 334

program, writing with one or more, 25-28
Push, 119

gsort, 288-292, 298

raise, 375, 387-391

rand, 309-311
RemoveDuplicates, 325
Result(), 163
rethrowFunc(), 421-422
return values, 49

setjmp, 375, 397-399
signal, 375, 387-391
srand, 309-311

SStack(), 121

stdio functions, 499
stdio.h file, 288

strerror, 374, 381-385
sync_with_stdio(), 501
terminate(), 417
TerminateHandler, 388
throwFunc(), 421-422
unary functions (predicates), 329
validation code, 132
virtual, 206-207, 561-563

G

Gather(') member function, 183

generating random numbers, 289, 309-311

get() member function, 173

GetDate function, 116

getValue function, 32-36

global data, 109, 148-151

global functions, scope resolution (::) operator,
555

global variables, 169-174

GNU projects, 501

H

handling errors, see error handling

header files, 76, 556, 288

hiding data from external programs, 118-128
hierarchies, inheritance, 81

hierarchy, 59

110
file 1/0, 525-547
operations, 288
streams library, 499-521
identify function, 560
ifstream class, reading files, 527
if_else statements, 415
implementation, 56
classes, 73, 124
constructor functions, 131
destructor functions, 131
encapsulation, 87
exception classes, 425-429
print manager, 281
static polymorphism, 559
implementations (STL), 530-531
implementing, overloading functions, 191-194
include statements (containers), 252
indented block style, 15
indexes, sorting indexes, 351-361
inheritance, 54-62, 72, 80-87, 161, 194-199
debugging and, 161
declaring, 195
hierarchies, 81
member variables, 202
model, 209-210, 214-216
multiple, 563
parameter passing, 161, 200-206
properties, 200
templates, 256
initialization
databases, 415
instances (constructors), 76
initializer expression, 40
initializer list, 78
inline functions, 477
inline member functions (constructors), 99
inserting elements in vectors, 250-254
insertion operator, 15
overloading, 238, 242
instances
initializing (constructors), 76
objects, 186
instantiation (classes), 502
int argc argument, 16
int data type, 14, 20
integer values
int data type, 14
private variables, 184
integers, 192
interface, 56, 77, 87
interpreting source code
allocating and deallocating memory
program, 39-41
calculations program, 18-19

m THE WAITE GROUP’S C++ HOW-TO

derived data types program, 31-36 LIFO (last-in-first-out) data model, 249, 261-268
exception handling program, 44-49 line comments, 14
first C++ program, 13-15 linked list classes, 151-152
loop statements, 22-23 linkers, 13
InterruptHandler function, 388 linking source code, 13
iostream file, 16 lists
iostream member functions, 173 linked list classes, 151
10Streams base classes, 501 sequential containers, 321
10Streams classes, 533 long data type, 20
10Streams library, 525-547 long function, 31-32
is-a relationships, 57 longjmp function, 375, 397-399
ISAM (Indexed Sequential Access Methods) C lookup functions
libraries, 414 Ifind, 302-309
ISEmpty function, 119 Isearch, 302-309
IsFull function, 119 loop statements, writing, 21-25
istream operators (>>), 503-504 loops
iterators, 250, 277 braces, 24
container elements, 274 do-while, 23
list items (pointers), 326 for, 24-25
pattern vector, 339 for loops, 100
iVal variable, 35-36 reading loop, stream errors, 529
while, 23
J-K while loops, 184

| h function, 289, 302-309
jumps (non-local), 375 search function

K&R style, 15 M
keywords macros, 502
access control, 121 main function, 14-16
class, 76 malloc() function, 376, 444
const, 20 delete operator and, 445-446
namespace, troubleshooting, 16 new operator and, 445-446
private, 121 manipulators
public, 121 setf(), 511
static, 97-101 setfill(), 507
struct, 110 setw(), 505-507
DDate type, 113 stream manipulators, 515-521
described, 32 unsetf(), 511
try, 416 MAX ELEMENTS constant, 39
virtual, 94 member functions, 121
Koenig loookup, 554 accessors, 77, 90
algorithms, 316
L at(), 249
base classes (subclasses), 256
languages . cal(), 183
declarative, 58 declaration, 77
t_ype_d, 219 definitions, 196
late binding, 293 . derived classes, 94
leaks, memory, prz_aventlng, 450-451 dot notation, 160, 181-186
Ieg{icy code,_ algorlthms_and, 287 duplicate names, 179
ngmographlcal comparison, 297 Gather(), 183
Ifmd functlon, 289, 302-309 inline (constructors), 99
libraries

invoking, 183
iostream, 173
message(), 427
methods, 179

1/0 streams library, 499-521
10Streams, 525-547
stdio, 499

INDEX

overloading, 76
public visibility classes, 77
set(), 173
Show(), 183
SStack class, 120
static, 100-101
streams, 543
template classes, 222, 226
unique, 320
virtual, 206
virtuality, 94
visibility, 90
member variables, inheritance, 202
members (classes), 72
memcpy() function, 446-447
memmove() function, 446-447
memory
allocation and deallocation, 376
at runtime, 41
desructors, 78
operating systems, 475
programs
dynamically allocated, clean up, 475-479
leaks
deleting arrays and, 450-451
preventing, 450-451
object use, 447-450
structure use, 447-450
virtual classes, 216
writing, 37-41
memory management
classes, 473-495
debugging, 451
memory manipulation functions, 446
mem() routines, 446-447
MempPtr object, 479
message() member function, 427
messages, 15
methods, 121
addRecord, 379-380
member functions, 179
predicates (count algorithm), 329
mismatch algorithm, 318, 338-341
modifiers (const), 77
modifying
elements
containers, 257-260
containters, 249
vectors, 257-260
namespaces (std), 557
references, 32
modular code, 128
modules (global data), 109
multiple inheritance, 563
multiply function, 32
multithreaded programming, 485-486

mutating algorithms, 362

mutating operations, 316

mutator functions, 77

mutex (mutliple exclusion semaphore), 486
MyChar, 448

MyLongint, 448

N

name conflicts, 550-551
NameExists function, 326
names
constructors, 186
functions, 191
namespace keyword, troubleshooting, 16
namespaces, 549-558
aliases, 553
definition, 552-553
delete operator, user-defined, 557
described, 14
external functions, 555-556
file-local functions, 555-556
header files, 556
interaction with other language features, 554
Koenig lookup, 554
new operator, user-defined, 557
properties, 551
restrictions, 557
std, 550, 557
using-declaration, 551-552
using-directive, 552
new expression
described, 39-40
object creation, 79
new function, 376
new operator, 444
free() routines and, 445-446
malloc() routines and, 445-446
objects (clean up), 479-483
overloading for arrays, 455-469
overriding for classes, 451-455
user-defined (namespaces), 557
non-local jumps, 375
nonmutating operations (algorithms), 316
nonmutative algorithms, 334
nonvirtual functions, 207
nonvirtual inheritance model, 210, 214-216
Notepad as text editor, 12
numbers, (random, generating), 289, 309-311
numeric operations (algorithms), 318

O

object-oriented approach vs procedural, 160-162,
165-169
object-oriented paradigm, 55-56

- R

THE WAITE GROUP’S C++ HOW-TO

object-oriented programming, see OOP
objects, 55
BinaryFile, 561
cin, 20
clean up, 479-483
container, 249-254
creating
dot notation, 183
new expression, 79
instances, 186
member functions, invoking, 183
memory use, 447-450
MempPtr, 479
ostream, formatting with, 500, 504-515
polymorphic (RTTI), 563
proxy, 37
references, 32
self-deallocating, 483-494
size, 450
TextFile, 561
ofstream class
opening files, 536
writing to files, 527-528
Ohm'’s law, 207
one-off error, 35
OOP (object-oriented programming), 53, 159
basics, 54
encapsulation, 54
inheritance, 54, 57-62
polymorphism, 54
return two letters, 168
opening
file streams, 526-529
files, writing to, 536
operating systems, memory allocation, 475
operations
algorithms, 316
sequence (predicates), 318, 328-333
operator overload, 134-139
declaration, 140
equality operators, 139-144
relational operators, 139-144
testing, 143
operators, 109
==, 328
assignment operator, 116
binary, overloading, 134-139
cast, 288
creating, 134-139
deference, 34
delete, 444-469
overloading for arrays, 455-469
overriding for classes, 451-455
dot operator, 79, 117
dynamic_cast, 563, 566-567

extraction
described, 20
overloading, 242
insertion
described, 15
overloading, 242
istream (>>), 503-504
new, 444-469
overloading for arrays, 455-457, 459-469
overriding for classes, 451-455
ostream (<<), 503-504
overloading, 109
scope resolution, 124, 160
scope resolution (::) operator, 175-180, 55
sizeof(), 450
typeid, 97, 564-566
unary, overloading, 138
order of container elements, 319, 362-368
ostream objects, formatting, 500, 504-515
ostream (<<) operators, 503-504
output
setw() manipulator, 505-507
described, 15
overloading
constructors, 186, 189
deleting operator, 455-469
functions
implementing, 191-194
implementing overload, 161
member functions, 76
insertion operator, 238, 242
new operator (arrays), 455-469
operator overloading, 134
operators, 109
binary, 134-139
testing, 143
unary, 138
subscript operator, 254
overriding operators, 451-455

P

parameters, passing to parent classes through
inheritance, 161, 200-206
partial sum algorithm, 346-351
passing parameters to parent classes through
inheritance, 161, 200-206
pattern vector, 338-339
perror function, 374, 381-385
pointer variables, 294
pointers
arrays (built-in), 273
code pointers, 292-295
data pointers, 292-295
defining, 294

INDEX

described, 32
function pointers, 293
programs, writing, 29-36
references, changing, 32
values, storing, 32
polymorphism, 54-56, 64-67, 72, 91-97, 559
static, implementing, 559
type_info class, 564
Pop function, 119
position-related stream member functions, 543
positive numbers, 511
predicates
algorithms, 333
methods (count algorithm), 329
sequence operations, 318, 328-333
preprocessor directives, 14
preventing memory leaks, 450-451
print manager, implementation, 281
printing to screen, 202
PrintM function, 334
private keyword, 121
private variables, 169-174
constructors, 173
integer values, 184
procedural approach versus object-oriented,
160-169
procedural programs, returning two letters, 167
programs
creating to perform calculations, 17-20
external, hiding data, 118-128
writing
to allocate and deallocate memory, 37-41
with derived data types, 29-36
exception handling, 41-50
without knowing C++, 12-17
loop statements, 21-25
with one or more functions, 25-28
properties
inheritance, 200
namespaces, 551
prot argument, 528
proxy objects, 37
pseudorandom numbers, 310
public keyword, 121
public variables, 169-174
public visibility, member functions, 77
Push function, 119
pushing data into stacks, 119

Q

gsort function, 288-292, 298
callback function, 294
queue data model, 250, 278-281

R

raise function, 375, 387-391
rand function, 309-311
random numbers
generating, 289, 309-311
pseudorandom, 310
ranges (containers), repeating actions, 318,
333-337
rational operators, overloading, 109
reading
binary files, 526, 536-542
container elements, 254-256
elements
containers, 249
vectors, 254-256
files
different positions, 526, 542-546
ifstream class, 527
reading files
EOF, 526, 529-532
error detection, 375, 395, 397
errors (off-by-one), 529-532
reading loop (stream errors), 529
reading/writing files (ofstream class), 527
reallocating containers, automatic, 249, 268-273
references
changing, 32
values, storing, 32
relational operations
declaration, 352
overloading, 139-144
RemoveDuplicates function, 325
restrictions on namespaces, 557
Result() function, 163
rethrowFunc() function, 421-422
rethrowing exceptions, 410, 419-425
return statement
calculations program, 19
described, 15
return values, 49
reviewing source code
allocating and deallocating memory
program, 39-41
calculations program, 18-19
derived data types program, 31-36
exception handling program, 44-49
first C++ program, 13-15
loop statements, 22-23
rotating sequences, 362
RTTI (runtime type information), 563
runtime, allocating, 41
runtime errors, 374-381
classes, 376, 400-405
reporting, 381-385
runtime type information, 559-568
see also RTTI

- Em

THE WAITE GROUP’S C++ HOW-TO

S

satellite data, 154

scientific notation (floating-point numbers),
512-514

scope (namespaces), 551

scope resolution (::) operator, 124, 160, 175-180

global functions, 555
search algorithm, 342-345
searches (containers)

value sequences, 319

values, 341-345
security, encapsulation and, 134
seeking in streams, 545
semaphores, 486

sequence operations (predicates), 318, 328-333

sequences
accumulated sums (container elements),
345-351
comparing, 318, 337-341
container values, searching for, 341-345
sequeneces
rotating, 362
sequential containers
classes, 318-328
deques, 321
lists, 321
vectors, 321
services, 59
set() member function, 173
setf() manipulator, 511
setfill() manipulator, 507
setjmp function, 375, 397-399
setprecision() modifier, 507-509
setw() manipulator, 505-507
Shape class, 186-190
sharing data, 148
see also global data
Show() member function, 183
signal function, 375, 387-391
signals, 389-390
signatures (constructors), 186, 189
size
buffers, adjusting automatically, 250
containter objects, 250-254
vectors, 252
sizeof() operator, 450
sort order (classes), 361
sorting
arrays, 288-297
gsort function, 289-292
strings, 296
container elements, 319, 351-361
indexes (containers), 351-361
vectors (sort algorithm), 358

sorting operations (algorithms), 316-317
source code
analyzing
allocating and deallocating memory
program, 39-41
calculations program, 18-19
derived data types program, 31-36
exception handling program, 44-49
first C++ program, 13-15
loop statements, 22-23
comments, 14-17, 20, 24, 37, 41, 49
compiling, 13
described, 12
linking, 13
specialization, 252
specifications (exception), 45
srand function, 309-311
SStack class, 120
SStack constructor, 124
SStack() function, 121
stack classes, defining, 123
stack container, 261-268
stack.h file, 123
stacks
as arrays, 119
characters, 119
pushing data into, 119
Standard C Library algorithms, 287-315
standard header files (namespaces), 556
standard output messages, 15

Standard Template Library (self-managing pointer

class), 479
Standard Template Library, see STL
starting point in C++ programs, 14
statements
array allocation, 40
compiling, troubleshooting, 16
compound, 19
cout, 36, 423
if_else, 415
loop, writing, 21-25
return
calculations program, 19
described, 15
throw, 418
try block, 416
static binding, 559
static class members, 97-101
implementing, 72
static keyword, 97-101
static member functions, 100-101
static polymorphism, implementing, 559
std namespace, 550, 557
stdio (GNU), 501
stdio functions, 499

INDEX

stdio library, 499
stdio.h file functions, 288
STL (Standard Template Library), 316, 479
algorithms, 288, 316
containers, 248-250, 253
implementations, 530-531
storing
values, 32
variables, 165
stream errors, reading loop, 529
stream manipulators, 500, 515-521
streams
data extraction, 530
error handling, 532-535
error handling , 526
files streams, opening, 526-529
member functions (position-related), 543
seeking in, 545
strerror function, 374, 381-385
string class, 264
strings
array, sorting, 296
EH, 414
lexicographical comparison, 297
Stroustrup, Bjarne, 120
struct declaration, 32-33
struct keyword, 110
DDate type, 113
described, 32
structure members, 117
structures, 108-109
byte padding, 449
classes comparison, 108, 151-155
memory use, 447-450
settings, working with all, 449
size, 450
template classes, 221, 238-243
variables, 117
when to use, 128, 151-155
styles
block, 15
comments, 14-17, 20, 24, 37, 41, 49
indented block, 15
K&R, 15
subscript operator, overloading, 254
sync_with_stdio() function, 501

T

template classes
arrays, 229
double values, 232
simple data types, 231
compound data types, 220, 228-232
constructors, defining, 222

data types
simple, 221-225
undefined, 220, 233-238
member functions, 222, 226
reading in data, 220, 225-228
structures, 221, 238-243
variables, defining, 235-236
templates
angle brackets, 252
class, 252
inheritance, 256
terminate() function, 417
TerminateHandler function, 388
terminating applications, 375, 391-393
testing
classes, 124, 133
operator overload, 143
text editors
ed, 12
Notepad, 12
vi, 12
TextFile object, 561
threads, 486
throw statement, 418
throwFunc() function, 421-422
Transaction vector float values, 347
troubleshooting
keywords (namespace), 16
statements (compiled), 16
try block, 417
described, 46-48
exception classes, 428
statements, 416
try keyword, 416
TSimple class, 227-228
typed languages, 219
typedef (error handler declaration), 436
typeed operator, 564-566
typeid operator, 97
types
classes, 55
declaring, 76
type_info class, 564

U

unary functions (predicates), 329
unary operators, overloading, 138
undefined data types (template classes), 220,
233-238
UNEXPECT directory, 434
unique algorithm, 320, 329
unique member function, 320
UNIX text editors, 12
unknown data types, 222
TSimple class, 227-228

- Em

THE WAITE GROUP’S C++ HOW-TO

unsetf() manipulator, 511

user-defined operators (hamespaces), 557
using directive, 14, 75, 252, 552
using-declaration (namespaces), 551-552

Vv

validation code (functions), 132
validity testing (expressions), 385
value argument, 32
values
containers, 319, 341-345
integer (int data type)
described, 14
pointers, storing, 32
references, storing, 32
return, 49
variables (function cal results), 415
variables
access, 169-174
const, 20
CurrentElement, 124
data members, 160
data types, combining into, 110
derived classes, 201
global, 169-174
ivVal, 35-36
pointer variables, 294
private, 169-174, 184
protected, 201
public, 169-174
reading in data (template classes), 220,
225-228
specifying, 111
storage (main), 165
structures, 117
template classes, defining, 235-236
values (function call result), 415
vector container, 320
vectors
class template, 252
elements
inserting, 250-254
modifying, 257-260
reading, 254-256

pattern vector, 338
sequential containers, 321
size, 252
sorting (sort algorithm), 358
Transaction (float values), 347
vi text editor, 12
views (classes), 89-91
virtual classes, 161, 206-216
memory, 216
model, converting to nonvirtual inheritance
model, 214-216
virtual functions, 206-207
dynamic binding, 561-563
virtual keyword, 94
virtual member functions, 94, 206
visibility (member functions), 90
void pointer (bsearch function), 300

W-Z
while loop, 23, 184
whitespace, setting, 507
writing
binary files, 526, 536-542
loop statements, 21-25
programs
to allocate and deallocate memory, 37-41
with derived data types, 29-36
exception handling, 41-50
without knowing C++, 12-17
with one or more functions, 25-28
to perform calculations, 17-20
writing to files
different positions, 526, 542-546
error detection, 375, 395-397
fstream class, 527
ofstream class, 527-528
opening, 536

	INPUT/OUTPUT Tearcard
	The Waite Group's C++ How To
	Copyright •1999 by Sams Publishing
	C O N T E N T S AT A G L A N C E
	TA B L E O F C O N T E N T S

	I N T R O D U C T I O N
	P ART I LANGUAGE TOPICS
	C H A P T E R 1 A QUICK INTRODUCTION TO THE LANGUAGE
	C H A P T E R 2 OBJECT ORIENTATION— THEORY AND PRACTICE
	C H A P T E R 3 OBJECT ORIENTATION—C++ SPECIFICS

	P ART II DATA STRUCTURES
	C H A P T E R 4 STRUCTURES VERSUS CLASSES
	C H A P T E R 5 COMMON MISTAKES MADE WITH CLASSES
	C H A P T E R 6 TEMPLATE CLASSES
	C H A P T E R 7 THE STANDARD TEMPLATE LIBRARY’S CONTAINER CLASSES

	PART I I I ALGORITHMS
	C H A P T E R 8 THE STANDARD C LIBRARY’S INCLUDED ALGORITHMS
	C H A P T E R 9 THE STANDARD TEMPLATE LIBRARY’S INCLUDED ALGORITHMS

	P ART IV ERROR HANDLING
	C H A P T E R 1 0 C-STYLE ERROR HANDLING
	C H A P T E R 1 1 EXCEPTION HANDLING IN C++

	P ART V MEMORY MANAGEMENT
	C H A P T E R 1 2 NEW AND DELETE VERSUS MALLOC() AND FREE()
	C H A P T E R 1 3 MEMORY MANAGEMENT TECHNIQUES USING CLASSES

	P ART VI I/O
	C H A P T E R 1 4 UNDERSTANDING THE I/O STREAMS LIBRARY
	C H A P T E R 1 5 FILE I/O

	PART V I I APPENDIXES
	Appendix A NAMESPACES
	Appendix B RUNTIME TYPE INFORMATION

	INDEX

